As a new member of thin-film solar cells, the perovskite solar ceils have inspired a new research hot in new photoelectric materials and devices, and have given a new energy to the photovoltaic science. Currently, var...As a new member of thin-film solar cells, the perovskite solar ceils have inspired a new research hot in new photoelectric materials and devices, and have given a new energy to the photovoltaic science. Currently, various device structures, including mesoporous and planar, with and without hole transport material have been developed. In this review, much focus has been addressed to the deposition of high-quality perovskite films, structural optimization, and interface engineering as well as the understanding of the charge generation, transport, and recombination mechanisms of the devices. Furthermore, cost, stability, and environment issues of the cell are also discussed for commercial application.展开更多
Light absorber is critical to the further applications of thin film solar cells. Here, we report a facile solution-processed method with an annealing temperature below250°C to fabricate Ag8 SnS6(ATS) light absorb...Light absorber is critical to the further applications of thin film solar cells. Here, we report a facile solution-processed method with an annealing temperature below250°C to fabricate Ag8 SnS6(ATS) light absorber for thin film solar cells. After optimization, the ATS-based thin film solar cells exhibited a reproducible power conversion efficiency(PCE) of about 0.25% and an outstanding long-term stability with 90% of the initial PCE retained after a more than 1,000 h degradation test. This research revealed the potential application of ATS as an earth-abundant, low toxic and chemically stable light absorber in thin film solar cells.展开更多
基金supported by Beijing Science and Technology Committee(Z131100006013003)the National Basic Research Program of China(2012CB932903)the National Natural Science Foundation of China(21173260,91233202)
文摘As a new member of thin-film solar cells, the perovskite solar ceils have inspired a new research hot in new photoelectric materials and devices, and have given a new energy to the photovoltaic science. Currently, various device structures, including mesoporous and planar, with and without hole transport material have been developed. In this review, much focus has been addressed to the deposition of high-quality perovskite films, structural optimization, and interface engineering as well as the understanding of the charge generation, transport, and recombination mechanisms of the devices. Furthermore, cost, stability, and environment issues of the cell are also discussed for commercial application.
基金financially supported by the National High Technology Research and Development Program of China(2015AA050602)the Project of Science and Technology Service(STS)Network Initiative,Chinese Academy of Sciences(KFJ-SW-STS-152)
文摘Light absorber is critical to the further applications of thin film solar cells. Here, we report a facile solution-processed method with an annealing temperature below250°C to fabricate Ag8 SnS6(ATS) light absorber for thin film solar cells. After optimization, the ATS-based thin film solar cells exhibited a reproducible power conversion efficiency(PCE) of about 0.25% and an outstanding long-term stability with 90% of the initial PCE retained after a more than 1,000 h degradation test. This research revealed the potential application of ATS as an earth-abundant, low toxic and chemically stable light absorber in thin film solar cells.