采用表面活性剂发泡法制备三维多孔泡沫碳光吸收体,通过改变碳化温度调节泡沫碳有机质/C相对含量比,研究其与光吸收、导热率的关系,找到最优平衡点,综合优化太阳光水蒸发性能。结果表明,泡沫碳的碳化温度对泡沫碳中有机质/C相对含量比...采用表面活性剂发泡法制备三维多孔泡沫碳光吸收体,通过改变碳化温度调节泡沫碳有机质/C相对含量比,研究其与光吸收、导热率的关系,找到最优平衡点,综合优化太阳光水蒸发性能。结果表明,泡沫碳的碳化温度对泡沫碳中有机质/C相对含量比和孔结构有直接影响,有机质/C相对含量的降低可有效提高样品光吸收率,但也会引起隔热性能降低,使水蒸发体系热管理能力变差;碳化温度为600℃时,泡沫碳光吸收-热管理达到最优平衡点,获得最高的光吸收率(96.5%)和最优的太阳光水蒸发性能(1.0391 kg m^(-2)h^(-1)),其水蒸发率是纯水的2.08倍。展开更多
Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology.In this work,we found that with the increase in the...Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology.In this work,we found that with the increase in the size of evaporation surfaces,the evaporation rate decreased.Both experimental and numerical simulation results confirmed that when the evaporation surface size increased,the middle portion of the evaporation surface acted as a‘‘dead evaporation zone”with little contribution to water evaporation.Based on this,the middle portion of the evaporation surface was selectively removed,and counterintuitively,both the evaporation rate and vapor output were increased due to the reconfigured and enhanced convection above the entire evaporation surface.As such,this work developed an important strategy to achieve a higher evaporation rate and increased vapour output while using less material.展开更多
Interfacial solar steam generation is an efficient water evaporation technology which has promising applications in desalination,sterilization,water purification and treatment.A common component of evaporator design i...Interfacial solar steam generation is an efficient water evaporation technology which has promising applications in desalination,sterilization,water purification and treatment.A common component of evaporator design is a thermal-insulation support placed between the photothermal evaporation surface and bulk water.This configuration,common in 2-dimensional(2 D)evaporation systems,minimizes heat loss from evaporation surface to bulk water,thus localizing the heat on the evaporation surface for efficient evaporation.This design is subsequently directly adopted for 3-dimensional(3 D)evaporators without any consideration if it is appropriate.However,unlike 2 D solar evaporators,the 3 D evaporators can also harvest additional energy(other than solar light)from the air and bulk water to enhance evaporation rate.In this scenario,the use of thermal insulator support is not proper since it will hinder energy extraction from water.Here,the traditional 3 D evaporator configuration was completely redesigned by using a highly thermally conductive material,instead of a thermal insulator,to connect evaporation surfaces and the bulk water.Much higher evaporation rates were achieved by this strategy,owing to the rapid heat transfer from the bulk water to the evaporation surfaces.Indoor and outdoor tests both confirmed that evaporation performance could be significantly improved by substituting a thermal insulator with thermally conductive support.These findings will redirect the future design of 3 D photothermal evaporators.展开更多
文摘采用表面活性剂发泡法制备三维多孔泡沫碳光吸收体,通过改变碳化温度调节泡沫碳有机质/C相对含量比,研究其与光吸收、导热率的关系,找到最优平衡点,综合优化太阳光水蒸发性能。结果表明,泡沫碳的碳化温度对泡沫碳中有机质/C相对含量比和孔结构有直接影响,有机质/C相对含量的降低可有效提高样品光吸收率,但也会引起隔热性能降低,使水蒸发体系热管理能力变差;碳化温度为600℃时,泡沫碳光吸收-热管理达到最优平衡点,获得最高的光吸收率(96.5%)和最优的太阳光水蒸发性能(1.0391 kg m^(-2)h^(-1)),其水蒸发率是纯水的2.08倍。
基金financial support from the Australian Research Council(FT190100485 and DP220100583)financial support from the China Scholarship Council for primary scholarshipsthe Future Industries Institute for top up scholarships。
文摘Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology.In this work,we found that with the increase in the size of evaporation surfaces,the evaporation rate decreased.Both experimental and numerical simulation results confirmed that when the evaporation surface size increased,the middle portion of the evaporation surface acted as a‘‘dead evaporation zone”with little contribution to water evaporation.Based on this,the middle portion of the evaporation surface was selectively removed,and counterintuitively,both the evaporation rate and vapor output were increased due to the reconfigured and enhanced convection above the entire evaporation surface.As such,this work developed an important strategy to achieve a higher evaporation rate and increased vapour output while using less material.
基金financial support from the Australian Research Council(ARC Future Fellowship FT190100485)financial support from the China Scholarship Council for his PhD Scholarshipthe Future Industries Institute for a top up scholarship。
文摘Interfacial solar steam generation is an efficient water evaporation technology which has promising applications in desalination,sterilization,water purification and treatment.A common component of evaporator design is a thermal-insulation support placed between the photothermal evaporation surface and bulk water.This configuration,common in 2-dimensional(2 D)evaporation systems,minimizes heat loss from evaporation surface to bulk water,thus localizing the heat on the evaporation surface for efficient evaporation.This design is subsequently directly adopted for 3-dimensional(3 D)evaporators without any consideration if it is appropriate.However,unlike 2 D solar evaporators,the 3 D evaporators can also harvest additional energy(other than solar light)from the air and bulk water to enhance evaporation rate.In this scenario,the use of thermal insulator support is not proper since it will hinder energy extraction from water.Here,the traditional 3 D evaporator configuration was completely redesigned by using a highly thermally conductive material,instead of a thermal insulator,to connect evaporation surfaces and the bulk water.Much higher evaporation rates were achieved by this strategy,owing to the rapid heat transfer from the bulk water to the evaporation surfaces.Indoor and outdoor tests both confirmed that evaporation performance could be significantly improved by substituting a thermal insulator with thermally conductive support.These findings will redirect the future design of 3 D photothermal evaporators.