The anodizing parameters of voltage, current density, temperature, and electrolyte choice were assessed to find an appropriate combination for the superheated slurry cast 7075 Al alloy substrate.The alloy was anodized...The anodizing parameters of voltage, current density, temperature, and electrolyte choice were assessed to find an appropriate combination for the superheated slurry cast 7075 Al alloy substrate.The alloy was anodized in sulfuric acid electrolyte or alternatively in sulfuric acid mixed with boric acid or citric acid. The voltages applied were in the range of 15-30 V. Anodizing current densities tested were 2 and 3 A/dm^2,while temperatures tested were 5 and 15 ℃. Thickness, surface morphology, hardness,and corrosion resistance of the oxide film were then evaluated.It was found that 25 V,2 A/dm^2 and 5 ℃ were suitable for this alloy when anodized in sulfuric acid. The oxide film was smooth with uniform thickness, low porosity, high hardness,and had the highest corrosion resistance at these parameters. However, discontinuous oxide films were observed from samples anodized at higher temperature of 15 ℃.Alternative electrolytes considered were sulfuric acid mixed with boric acid or citric acid. The results showed that electrolytes with boric acid or citric acid increased thickness, hardness, corrosion resistance and quality of the oxide films.However, these oxide films were inferior to those obtained with sulfuric acid electrolyte at lower temperature(25 V, 2 A/dm^2 and5 ℃).展开更多
High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of ...High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of geometric parameters on VPD are analyzed and the anode thickness, tan, and the cathode length, lea, are identified as the key design parameters. Thermo-fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters. The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters. The optimal lea and the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin, the inner tube radius, and tan. And all these optimization are made at 1073.15 K. The results show that: (i) significant performance improvement may be achieved by geometry optimization, (ii) the seemingly high MVPD of 11 and 14 W/cm^3 can be easily realized for as-mtSOFC with single- and double-terminal anode current collection, respectively. Moreover, the variation of the area specific power density with/cac(2 mm, 40 mm) is determined for three representative (tin, tan) combinations. Besides, it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.展开更多
Anodic coatings were obtained by micro-arc oxidation on AZ91HP magnesium alloys in a solution containing 10 g/L NaOH and 8 g/L phytic acid.The effects of electric parameters including frequency,final voltage,duty cycl...Anodic coatings were obtained by micro-arc oxidation on AZ91HP magnesium alloys in a solution containing 10 g/L NaOH and 8 g/L phytic acid.The effects of electric parameters including frequency,final voltage,duty cycle and current density on the corrosion resistance of anodic coatings formed on the magnesium alloys were investigated by using an orthogonal experiment of four factors with three levels.The results show that the final voltage plays a main role on the coating properties.The orders of affecting corrosion resistance and coating thickness are separately ranked from high to low as,final voltage>duty cycle>current density>frequency and final voltage>current density>frequency>duty cycle.The final voltage influences the corrosion resistance of the anodized samples mainly by changing the surface morphology and coating thickness.展开更多
This work presents the potentiostatic anodization study of titania nanotube array films fabricated in fluoride-based organic electrolytes including DEG (diethylene glycol) and EG (ethylene glycol). The work focuse...This work presents the potentiostatic anodization study of titania nanotube array films fabricated in fluoride-based organic electrolytes including DEG (diethylene glycol) and EG (ethylene glycol). The work focuses on the effect of important anodization parameters such as applied voltage, anodization time, and electrolyte type on nanotube morphologies and corresponding surface properties. Depending upon unique nanotube formation structures obtained from each anodizing electrolyte, wettability of the nanotube array layer has been determined by means of the contact angle measurement. The EG nanotube array films with close-packing cell orientation are found to show hydrophilic behavior. While the well separated DEG nanotube array films are found to exhibit hydrophobic behavior, with the characteristics of more discrete, wider cell separation obtained through manipulating the electrolyte conditions and the fabrication techniques offering considerable prospects for developing the superhydrophobic sample surface. Such formation structures observed for the DEG fabricated nanotube is believed to play a prominent role in determining the surface wettability of the anodized nanotube array film. The achieved result in this work is anticipated to pave the way to other relevant applications, where interfacial properties are critically concerned.展开更多
A systematic laboratory study was conducted on current efficiency and corrosion obtained in cryolite-alumina melts with SnO2-Sb203-CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring th...A systematic laboratory study was conducted on current efficiency and corrosion obtained in cryolite-alumina melts with SnO2-Sb203-CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring the total amount of oxygen evolved at the anode and was found to be ~ 95%. The influence of operating parameters (inter-elec- trode distance, temperature and current density) was evaluated. The quantitative interdependencies as well as the ranges of CE optima[ values were established (2-3 cm, 940-960 ℃ and 0.7-0.8 A.cm 2). The corrosion process of these anodes was evaluated by the mass loss method. The evaluation also took care of the corrosion data, as the prob- lem of the anode corrosion appeared to be the main obstacle for the use of those anodes in the commercial cells.Low-ering of the ACD up to 2 cm did not aggravate anode corrosion.展开更多
In view of the universality of the parallel connection of solar cells and their mismatch problem, in the present paper, we select two shunt solar cells (connected in parallel) as our research object, and use the equiv...In view of the universality of the parallel connection of solar cells and their mismatch problem, in the present paper, we select two shunt solar cells (connected in parallel) as our research object, and use the equivalent one-diode circuit of the solar cell and the analysis of the two-body model. At first, the equations of current and voltage are deduced from the related electrical laws and the circuit diagram of the two solar cells connected in parallel. Then, according to the experimentally measured data of typical single-crystalline silicon solar cells (125 mm×125 mm), we select the appropriate simulation parameters. Following this, by using the photo-generated current, the shunt resistance, and the serial resistance of one of the shunt solar cells and the load resistance as independent variables, in turn, the changing characteristics of each branch current in the two shunt solar cells are numerically discussed and analyzed for these four cases for the first time. At the same time, we provide a simple physical explanation for the modeling results. Our analyses show that these parameters have different impacts on the internal currents of solar cells connected in parallel. These results provide a reference to solve the problem of connecting solar cells and to develop higher efficiency solar cells and systems. Meanwhile, the results will contribute to a better comprehension of the reasons for efficiency loss of solar cells and systems, and deepen the understanding of the electrical of solar cells behavior for high performance photovoltaic applications.展开更多
基金financially supported by the Higher Education Research Promotionthe National Research University Project of Thailand, Office of the Higher Education (Contract No. ENG580529S)+2 种基金Center of Excellence in Materials Engineering (CEME)the Graduate Engineer Scholarship and the Graduate School ScholarshipPrince of Songkla University, including Surat Thani Campus (2016)
文摘The anodizing parameters of voltage, current density, temperature, and electrolyte choice were assessed to find an appropriate combination for the superheated slurry cast 7075 Al alloy substrate.The alloy was anodized in sulfuric acid electrolyte or alternatively in sulfuric acid mixed with boric acid or citric acid. The voltages applied were in the range of 15-30 V. Anodizing current densities tested were 2 and 3 A/dm^2,while temperatures tested were 5 and 15 ℃. Thickness, surface morphology, hardness,and corrosion resistance of the oxide film were then evaluated.It was found that 25 V,2 A/dm^2 and 5 ℃ were suitable for this alloy when anodized in sulfuric acid. The oxide film was smooth with uniform thickness, low porosity, high hardness,and had the highest corrosion resistance at these parameters. However, discontinuous oxide films were observed from samples anodized at higher temperature of 15 ℃.Alternative electrolytes considered were sulfuric acid mixed with boric acid or citric acid. The results showed that electrolytes with boric acid or citric acid increased thickness, hardness, corrosion resistance and quality of the oxide films.However, these oxide films were inferior to those obtained with sulfuric acid electrolyte at lower temperature(25 V, 2 A/dm^2 and5 ℃).
基金This work was supported by the National Natural Science Foundation of China (No.11374272 and No.11574284) and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of geometric parameters on VPD are analyzed and the anode thickness, tan, and the cathode length, lea, are identified as the key design parameters. Thermo-fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters. The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters. The optimal lea and the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin, the inner tube radius, and tan. And all these optimization are made at 1073.15 K. The results show that: (i) significant performance improvement may be achieved by geometry optimization, (ii) the seemingly high MVPD of 11 and 14 W/cm^3 can be easily realized for as-mtSOFC with single- and double-terminal anode current collection, respectively. Moreover, the variation of the area specific power density with/cac(2 mm, 40 mm) is determined for three representative (tin, tan) combinations. Besides, it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.
基金Projects(GJJ08363,GJJ09573)supported by the Scientific Research Fund of Jiangxi Provincial Education Department,China
文摘Anodic coatings were obtained by micro-arc oxidation on AZ91HP magnesium alloys in a solution containing 10 g/L NaOH and 8 g/L phytic acid.The effects of electric parameters including frequency,final voltage,duty cycle and current density on the corrosion resistance of anodic coatings formed on the magnesium alloys were investigated by using an orthogonal experiment of four factors with three levels.The results show that the final voltage plays a main role on the coating properties.The orders of affecting corrosion resistance and coating thickness are separately ranked from high to low as,final voltage>duty cycle>current density>frequency and final voltage>current density>frequency>duty cycle.The final voltage influences the corrosion resistance of the anodized samples mainly by changing the surface morphology and coating thickness.
文摘This work presents the potentiostatic anodization study of titania nanotube array films fabricated in fluoride-based organic electrolytes including DEG (diethylene glycol) and EG (ethylene glycol). The work focuses on the effect of important anodization parameters such as applied voltage, anodization time, and electrolyte type on nanotube morphologies and corresponding surface properties. Depending upon unique nanotube formation structures obtained from each anodizing electrolyte, wettability of the nanotube array layer has been determined by means of the contact angle measurement. The EG nanotube array films with close-packing cell orientation are found to show hydrophilic behavior. While the well separated DEG nanotube array films are found to exhibit hydrophobic behavior, with the characteristics of more discrete, wider cell separation obtained through manipulating the electrolyte conditions and the fabrication techniques offering considerable prospects for developing the superhydrophobic sample surface. Such formation structures observed for the DEG fabricated nanotube is believed to play a prominent role in determining the surface wettability of the anodized nanotube array film. The achieved result in this work is anticipated to pave the way to other relevant applications, where interfacial properties are critically concerned.
文摘A systematic laboratory study was conducted on current efficiency and corrosion obtained in cryolite-alumina melts with SnO2-Sb203-CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring the total amount of oxygen evolved at the anode and was found to be ~ 95%. The influence of operating parameters (inter-elec- trode distance, temperature and current density) was evaluated. The quantitative interdependencies as well as the ranges of CE optima[ values were established (2-3 cm, 940-960 ℃ and 0.7-0.8 A.cm 2). The corrosion process of these anodes was evaluated by the mass loss method. The evaluation also took care of the corrosion data, as the prob- lem of the anode corrosion appeared to be the main obstacle for the use of those anodes in the commercial cells.Low-ering of the ACD up to 2 cm did not aggravate anode corrosion.
基金supported by the National Natural Science Foundation of China (Grant No. 51561031)the Natural Science Foundation of Guangxi Province (Grant No. 2015GXNSFBA139240)+1 种基金Open Foundation of Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Large Data Processing (Grant No. 2015CSOBD0102)the Highlevel Personnel Scientific Research Funds of Yulin Normal University (Grant No. G20150001)
文摘In view of the universality of the parallel connection of solar cells and their mismatch problem, in the present paper, we select two shunt solar cells (connected in parallel) as our research object, and use the equivalent one-diode circuit of the solar cell and the analysis of the two-body model. At first, the equations of current and voltage are deduced from the related electrical laws and the circuit diagram of the two solar cells connected in parallel. Then, according to the experimentally measured data of typical single-crystalline silicon solar cells (125 mm×125 mm), we select the appropriate simulation parameters. Following this, by using the photo-generated current, the shunt resistance, and the serial resistance of one of the shunt solar cells and the load resistance as independent variables, in turn, the changing characteristics of each branch current in the two shunt solar cells are numerically discussed and analyzed for these four cases for the first time. At the same time, we provide a simple physical explanation for the modeling results. Our analyses show that these parameters have different impacts on the internal currents of solar cells connected in parallel. These results provide a reference to solve the problem of connecting solar cells and to develop higher efficiency solar cells and systems. Meanwhile, the results will contribute to a better comprehension of the reasons for efficiency loss of solar cells and systems, and deepen the understanding of the electrical of solar cells behavior for high performance photovoltaic applications.