In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that...In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that the PANI modification,especially the pulse potential method for PANI synthesis could obviously improve the cell energy output and reduce the anode internal resistance.The anode is modified by PANI doped with Fe or Mn to further improve the BMFC performance.A maximum power density of 17.51 mW/m2 is obtained by PANI-Fe anode BMFC,which is 8.1 times higher than that of control.The PANI-Mn anode BMFC also gives a favorable maximum power density(16.78 mW/m2).Fe or Mn modification has better effect in improving the conductivity of polyaniline,thus improving the energy output of BMFCs.This work applying PANI composite anode into BMFC brings new development prospect and could promote the practical application of BMFC.展开更多
文摘以双室微生物燃料电池为反应器,铁氰化钾为阴极液,研究污水处理厂活性污泥菌液和玉米秸秆水解液对MFC的产电性能的影响。结果表明,随着阳极中活性污泥菌液体积(1.5、3.0、4.5、6.0 mL)增加,MFC的产电量逐渐增加,当活性污泥的体积增加至7.5 mL时,产电量开始呈下降趋势;玉米秸秆水解液在底物中的浓度为0、10、15、20、30、40 g/L时,电池的稳定电压分别为54、157、248、208、170、146 mV。当阳极活性污泥菌液体积为6 m L、玉米秸秆水解液浓度为15 g/L时,微生物燃料电池的产电性能最佳,此时MFC的功率密度为54.6 m /m^2,内阻为496Ω。同时,循环伏安曲线(C-V)和交流阻抗曲线(EIS)测试可知,MFC的电极过程由电荷传递和扩散过程共同控制,反应过程受电子传递控制。
基金Project(HIT.NSRIF.2014128)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014M551257)supported by the China Postdoctoral Science FoundationProject(WH20150208)supported by the Subject Development Foundation of Harbin Institute of Technology at Weihai,China
文摘In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that the PANI modification,especially the pulse potential method for PANI synthesis could obviously improve the cell energy output and reduce the anode internal resistance.The anode is modified by PANI doped with Fe or Mn to further improve the BMFC performance.A maximum power density of 17.51 mW/m2 is obtained by PANI-Fe anode BMFC,which is 8.1 times higher than that of control.The PANI-Mn anode BMFC also gives a favorable maximum power density(16.78 mW/m2).Fe or Mn modification has better effect in improving the conductivity of polyaniline,thus improving the energy output of BMFCs.This work applying PANI composite anode into BMFC brings new development prospect and could promote the practical application of BMFC.