A method to investigate the effect of gas bubble on cell voltage oscillations was established. The whole aluminum electrolysis cell was treated as a resistance circuit, and the dynamic simulation of the cell equivalen...A method to investigate the effect of gas bubble on cell voltage oscillations was established. The whole aluminum electrolysis cell was treated as a resistance circuit, and the dynamic simulation of the cell equivalent circuit was modeled with Matlab/Simulink simulation software. The time-series signals of cell voltage and anode current were obtained under different bubble conditions, and analyzed by spectral and statistical analysis methods. The simulation results show that higher bubble release frequency has a significant effect on the cell voltage oscillations. When the bubble coverage of one anode block exceeds 80%, the cell voltage may exceed its normal fluctuation amplitude. The simulation also proves that the anode effect detected by computer in actual production is mainly the whole cell anode effect.展开更多
The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a p...The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a point of the RFP.During the turning-off of the IGBT,the p-MOSFET is turned on,which provides a channel for the excessive carriers to flow out of the drift region and prevents the carriers from being injected into the drift region.At the same time,the electric field affected by the RFP makes the excessive carriers flow through a wider region,which almost eliminates the second phase of the turning-off of the SOI-LIGBT caused by the substrate bias.Faster turn-off speed is achieved by above two factors.During the on state of the IGBT,the p-MOSFET is off,which leads to an on-state performance like normal one.At least,the increase of the breakdown voltage for 25% and the decrease of the turn-off time for 65% can be achieved by this structure as can be verified by the numerical simulation results.展开更多
The corrosion pathways in AA2024-T3, AA5083-O and AA6082-T6 alloys have been investigated. The objective of the investigation is to further the understanding of the complex localised corrosion mechanism in aluminium a...The corrosion pathways in AA2024-T3, AA5083-O and AA6082-T6 alloys have been investigated. The objective of the investigation is to further the understanding of the complex localised corrosion mechanism in aluminium alloys. The investigation was carried out by examining the corroded surfaces of the alloys after potentiodynamic polarization tests in a 3.5% NaCl solution with the aid of a scanning electron microscope, and by analysing the flow of anolyte solution using the scanning vibrating electrode technique. The results revealed that the overall corrosion pathways in the alloys are distinctively different and are influenced by the flow of anolyte solution. Also revealed, was the fact that corrosion propagates in two ways (particularly in the AA5083-O and AA6082-T6 alloys): an overall pathway in the corrosion front (filiform-like pathway in the AA5083 alloy and organized linear pathways in AA6082 alloy); and the crystallographic channelling along the (100) directions. These are dependent on the grain distinct features of the AA5083-O and AA6082-T6 alloys and are not influenced by the presence of coarse second phase particles in these alloys, compared with the AA2024-T3 alloy, where the corrosion pathways are more dependent on the presence of second phase particles and grain boundary character.展开更多
In the last year, ECRH system has been built in the HL-2A and the testing of gyrotron is also finished. In the project testing, one of the problems is current-peak occurring in the anode circuit of gyrotron. The curre...In the last year, ECRH system has been built in the HL-2A and the testing of gyrotron is also finished. In the project testing, one of the problems is current-peak occurring in the anode circuit of gyrotron. The current-peak is much larger than that of the value set in protection circuit. The frequent current-peak frequently occurring in the rising of anode-voltage often caused the protection circuit to mistaken trigger. The mistaken triggering often halted the normal gyrotron-testing. A set of equations of anode circuit are derived for analysis the phenomena of the current-peak. The calculation based on the deduced formula shows that value of the current-peak strongly depends on the inductance L, capacitance C and the ramp-time of anode voltage in the anode circuit. The conductance L and capacitance C are the characteristic inductance and capacitance of the cable that is used for anode HV power supply. The numerical calculation is exactly consistent with waveform of the current peak recorded by oscillograph, that means the derived formula are correct. In order to decrease the value of the current-peak, we should decrease capacitance C, and increase inductance L and ramp-time of anode voltage.展开更多
Traditional light bulbs (e.g., incandescent, fluorescent) use too much electricity, convert very little energy into light of sufficient quality and in their production use toxic contaminants. During the last few yea...Traditional light bulbs (e.g., incandescent, fluorescent) use too much electricity, convert very little energy into light of sufficient quality and in their production use toxic contaminants. During the last few years, a new type of light source, LED (light emitting diode) bulb, has gained increasing popularity and its costs are set to plunge even further. LED bulbs offer many advantages over traditional sources, and they can be used as a direct replacement to existing lighting. This paper will use a spreadsheet-based analysis with hourly solar data supplied by Ecotect to show that, the efficiency of LED installations can be increased when used in conjunction with photovoltaic modules, as the two generate (and use) DC (direct-current) electricity, thereby eliminating intermediate-level losses in the electronic circuitry. If a storage battery is included, the solar panels generate electricity during the times when the occupants are not necessarily using the lighting, but the stored electricity can be used to power the lighting when the energy is required. The latest results demonstrate that, a slight reduction in the required floor area to be lit allows the solar-battery-LED system to be implemented in small buildings using a storage battery size that is within the range of present commercial devices.展开更多
SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is appfied as an interfacial l...SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is appfied as an interfacial layer between the nanocrystalline TiO2 film and the FTO substrate in dye-sensitized solar cells (DSCs). Experimental results show that the introduction of a SnO2 nanosheet film not only suppresses the electron back-transport reaction at the electrolyte/FTO interface but also provides an efficient electron transition channel along the SnO2 nanosheets, and as a result, increasing the open circuit voltage and short current density, and finally improving the conversion efficiency for the DSCs from 3.89% to 4.62%.展开更多
In view of the universality of the parallel connection of solar cells and their mismatch problem, in the present paper, we select two shunt solar cells (connected in parallel) as our research object, and use the equiv...In view of the universality of the parallel connection of solar cells and their mismatch problem, in the present paper, we select two shunt solar cells (connected in parallel) as our research object, and use the equivalent one-diode circuit of the solar cell and the analysis of the two-body model. At first, the equations of current and voltage are deduced from the related electrical laws and the circuit diagram of the two solar cells connected in parallel. Then, according to the experimentally measured data of typical single-crystalline silicon solar cells (125 mm×125 mm), we select the appropriate simulation parameters. Following this, by using the photo-generated current, the shunt resistance, and the serial resistance of one of the shunt solar cells and the load resistance as independent variables, in turn, the changing characteristics of each branch current in the two shunt solar cells are numerically discussed and analyzed for these four cases for the first time. At the same time, we provide a simple physical explanation for the modeling results. Our analyses show that these parameters have different impacts on the internal currents of solar cells connected in parallel. These results provide a reference to solve the problem of connecting solar cells and to develop higher efficiency solar cells and systems. Meanwhile, the results will contribute to a better comprehension of the reasons for efficiency loss of solar cells and systems, and deepen the understanding of the electrical of solar cells behavior for high performance photovoltaic applications.展开更多
This paper reported a novel method of integrating bypass diodes into crystalline silicon solar cells.Bypass diodes which have the opposite p-n junction were formed by printing specific paste on the local surface of so...This paper reported a novel method of integrating bypass diodes into crystalline silicon solar cells.Bypass diodes which have the opposite p-n junction were formed by printing specific paste on the local surface of solar cells using screen printing,while infrared laser was applied to isolate the diode from the cell after firing.A module of crystalline silicon solar cells with integrated bypass diodes was fabricated and the I-V characteristics were measured under different shade conditions.The experimental results clearly showed that the integrated bypass diodes can effectively stabilize module's short circuit current while reduce the module power loss when shaded as well.展开更多
基金Project(2012BAE08B09)supported by the National Key Technology R&D Program of China
文摘A method to investigate the effect of gas bubble on cell voltage oscillations was established. The whole aluminum electrolysis cell was treated as a resistance circuit, and the dynamic simulation of the cell equivalent circuit was modeled with Matlab/Simulink simulation software. The time-series signals of cell voltage and anode current were obtained under different bubble conditions, and analyzed by spectral and statistical analysis methods. The simulation results show that higher bubble release frequency has a significant effect on the cell voltage oscillations. When the bubble coverage of one anode block exceeds 80%, the cell voltage may exceed its normal fluctuation amplitude. The simulation also proves that the anode effect detected by computer in actual production is mainly the whole cell anode effect.
文摘The electrical performance including breakdown voltage and turn-off speed of SOI-LIGBT is improved by incorporating a resistive field plate (RFP) and a p-MOSFET.The p-MOSFET is controlled by a signal detected from a point of the RFP.During the turning-off of the IGBT,the p-MOSFET is turned on,which provides a channel for the excessive carriers to flow out of the drift region and prevents the carriers from being injected into the drift region.At the same time,the electric field affected by the RFP makes the excessive carriers flow through a wider region,which almost eliminates the second phase of the turning-off of the SOI-LIGBT caused by the substrate bias.Faster turn-off speed is achieved by above two factors.During the on state of the IGBT,the p-MOSFET is off,which leads to an on-state performance like normal one.At least,the increase of the breakdown voltage for 25% and the decrease of the turn-off time for 65% can be achieved by this structure as can be verified by the numerical simulation results.
基金EPSRC for financial support through the LATEST2 Programme grant (EP/H020047/1)
文摘The corrosion pathways in AA2024-T3, AA5083-O and AA6082-T6 alloys have been investigated. The objective of the investigation is to further the understanding of the complex localised corrosion mechanism in aluminium alloys. The investigation was carried out by examining the corroded surfaces of the alloys after potentiodynamic polarization tests in a 3.5% NaCl solution with the aid of a scanning electron microscope, and by analysing the flow of anolyte solution using the scanning vibrating electrode technique. The results revealed that the overall corrosion pathways in the alloys are distinctively different and are influenced by the flow of anolyte solution. Also revealed, was the fact that corrosion propagates in two ways (particularly in the AA5083-O and AA6082-T6 alloys): an overall pathway in the corrosion front (filiform-like pathway in the AA5083 alloy and organized linear pathways in AA6082 alloy); and the crystallographic channelling along the (100) directions. These are dependent on the grain distinct features of the AA5083-O and AA6082-T6 alloys and are not influenced by the presence of coarse second phase particles in these alloys, compared with the AA2024-T3 alloy, where the corrosion pathways are more dependent on the presence of second phase particles and grain boundary character.
文摘In the last year, ECRH system has been built in the HL-2A and the testing of gyrotron is also finished. In the project testing, one of the problems is current-peak occurring in the anode circuit of gyrotron. The current-peak is much larger than that of the value set in protection circuit. The frequent current-peak frequently occurring in the rising of anode-voltage often caused the protection circuit to mistaken trigger. The mistaken triggering often halted the normal gyrotron-testing. A set of equations of anode circuit are derived for analysis the phenomena of the current-peak. The calculation based on the deduced formula shows that value of the current-peak strongly depends on the inductance L, capacitance C and the ramp-time of anode voltage in the anode circuit. The conductance L and capacitance C are the characteristic inductance and capacitance of the cable that is used for anode HV power supply. The numerical calculation is exactly consistent with waveform of the current peak recorded by oscillograph, that means the derived formula are correct. In order to decrease the value of the current-peak, we should decrease capacitance C, and increase inductance L and ramp-time of anode voltage.
文摘Traditional light bulbs (e.g., incandescent, fluorescent) use too much electricity, convert very little energy into light of sufficient quality and in their production use toxic contaminants. During the last few years, a new type of light source, LED (light emitting diode) bulb, has gained increasing popularity and its costs are set to plunge even further. LED bulbs offer many advantages over traditional sources, and they can be used as a direct replacement to existing lighting. This paper will use a spreadsheet-based analysis with hourly solar data supplied by Ecotect to show that, the efficiency of LED installations can be increased when used in conjunction with photovoltaic modules, as the two generate (and use) DC (direct-current) electricity, thereby eliminating intermediate-level losses in the electronic circuitry. If a storage battery is included, the solar panels generate electricity during the times when the occupants are not necessarily using the lighting, but the stored electricity can be used to power the lighting when the energy is required. The latest results demonstrate that, a slight reduction in the required floor area to be lit allows the solar-battery-LED system to be implemented in small buildings using a storage battery size that is within the range of present commercial devices.
基金supported by the National Natural Science Foundation of China (Nos.20903073 and 20671070)the Key Project of Education Ministry of China (No.207008)+1 种基金the Natural Science Foundation of Tianjin (No.09JCYBJC07000)the Science and Technology Developing Foundation for Tianjin Universities (No.20080309)
文摘SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is appfied as an interfacial layer between the nanocrystalline TiO2 film and the FTO substrate in dye-sensitized solar cells (DSCs). Experimental results show that the introduction of a SnO2 nanosheet film not only suppresses the electron back-transport reaction at the electrolyte/FTO interface but also provides an efficient electron transition channel along the SnO2 nanosheets, and as a result, increasing the open circuit voltage and short current density, and finally improving the conversion efficiency for the DSCs from 3.89% to 4.62%.
基金supported by the National Natural Science Foundation of China (Grant No. 51561031)the Natural Science Foundation of Guangxi Province (Grant No. 2015GXNSFBA139240)+1 种基金Open Foundation of Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Large Data Processing (Grant No. 2015CSOBD0102)the Highlevel Personnel Scientific Research Funds of Yulin Normal University (Grant No. G20150001)
文摘In view of the universality of the parallel connection of solar cells and their mismatch problem, in the present paper, we select two shunt solar cells (connected in parallel) as our research object, and use the equivalent one-diode circuit of the solar cell and the analysis of the two-body model. At first, the equations of current and voltage are deduced from the related electrical laws and the circuit diagram of the two solar cells connected in parallel. Then, according to the experimentally measured data of typical single-crystalline silicon solar cells (125 mm×125 mm), we select the appropriate simulation parameters. Following this, by using the photo-generated current, the shunt resistance, and the serial resistance of one of the shunt solar cells and the load resistance as independent variables, in turn, the changing characteristics of each branch current in the two shunt solar cells are numerically discussed and analyzed for these four cases for the first time. At the same time, we provide a simple physical explanation for the modeling results. Our analyses show that these parameters have different impacts on the internal currents of solar cells connected in parallel. These results provide a reference to solve the problem of connecting solar cells and to develop higher efficiency solar cells and systems. Meanwhile, the results will contribute to a better comprehension of the reasons for efficiency loss of solar cells and systems, and deepen the understanding of the electrical of solar cells behavior for high performance photovoltaic applications.
基金supported by the Scientific and Technological Key Research Projects of Guangdong Province (Grant No. 2008A080800007)the Science & Research Program of Guangdong Province (Grant No. 2009B011100002)
文摘This paper reported a novel method of integrating bypass diodes into crystalline silicon solar cells.Bypass diodes which have the opposite p-n junction were formed by printing specific paste on the local surface of solar cells using screen printing,while infrared laser was applied to isolate the diode from the cell after firing.A module of crystalline silicon solar cells with integrated bypass diodes was fabricated and the I-V characteristics were measured under different shade conditions.The experimental results clearly showed that the integrated bypass diodes can effectively stabilize module's short circuit current while reduce the module power loss when shaded as well.