In order to study the anodic behavior and microstmctures of A1/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction (XRD) ...In order to study the anodic behavior and microstmctures of A1/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses, the mechanism of the anodic processes playing on the surface of A1/Pb-0.8%Ag and A1/Pb-0.75%Ag-0.03%Co anodes prepared by electro-deposition from methyl sulfonic acid bath for zinc electrowinning from model sulphate electrolytes have been measured. On the basis of the cyclic voltammograms obtained, information about the corrosion rate of the composite in PbO2 region has been concluded. The microstructures were also observed by means of SEM and XRD which showed Pb-0.75%Ag-0.03%Co alloy composite coating has uniform and chaotic orientation tetragonal symmetry crystallites of PbSO4, but Pb-0.8%Ag alloy composite coating has well-organized orientation crystallites of PbSO4 concentrated in the certain zones after 24 h of anodic polarization. It is important that Al/Pb-0.75%Ag-0.03%Co anode oxide film consists of non-conductive dense MnO2 and PbSO4 and a, fl-PbO2 penetrated into which, in fact, are the active centers of the oxygen evolution after 24 h of anodic polarization.展开更多
基金Project(51004056)supported by the National Natural Science Foundation of China
文摘In order to study the anodic behavior and microstmctures of A1/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses, the mechanism of the anodic processes playing on the surface of A1/Pb-0.8%Ag and A1/Pb-0.75%Ag-0.03%Co anodes prepared by electro-deposition from methyl sulfonic acid bath for zinc electrowinning from model sulphate electrolytes have been measured. On the basis of the cyclic voltammograms obtained, information about the corrosion rate of the composite in PbO2 region has been concluded. The microstructures were also observed by means of SEM and XRD which showed Pb-0.75%Ag-0.03%Co alloy composite coating has uniform and chaotic orientation tetragonal symmetry crystallites of PbSO4, but Pb-0.8%Ag alloy composite coating has well-organized orientation crystallites of PbSO4 concentrated in the certain zones after 24 h of anodic polarization. It is important that Al/Pb-0.75%Ag-0.03%Co anode oxide film consists of non-conductive dense MnO2 and PbSO4 and a, fl-PbO2 penetrated into which, in fact, are the active centers of the oxygen evolution after 24 h of anodic polarization.