Manganese oxide cluster cations Mnm180n+ were prepared by laser ablation and reacted with hydrogen sulfide (H2S) in a fast flow reactor under thermal collision conditions. A time-of-flight mass spectrometer was use...Manganese oxide cluster cations Mnm180n+ were prepared by laser ablation and reacted with hydrogen sulfide (H2S) in a fast flow reactor under thermal collision conditions. A time-of-flight mass spectrometer was used to detect the cluster distributions before and after the interactions with H2S. The experiments suggest that oxygen-for-sulfur (O/S) ex- change reaction to release water took place in the reactor for most of the manganese oxide cluster cations: MnmlSOn++H2S→Mnm18On-1S++H218O. Density functional theory cal- culations were performed for reaction mechanisms of Mn202++H2S, Mn203++H2S, and Mn204++H2S. The computational results indicate these O/S exchange reactions are both thermodynamically and kinetically favorable, thus in good agreement with the experimental observations. The O/S exchange reactions identified in this gas-phase cluster study parallel similar behavior of related condensed phase reaction systems.展开更多
Methyl 3-hydroxypropanoate was synthesized via hydroesterification of ethylene oxide with CO in the presence of dicobalt octacarbonyl catalyst and methanol solvent. The catalyst exhibited high catalytic activity. The ...Methyl 3-hydroxypropanoate was synthesized via hydroesterification of ethylene oxide with CO in the presence of dicobalt octacarbonyl catalyst and methanol solvent. The catalyst exhibited high catalytic activity. The effect of reaction temperature, CO pressure, methanol dosage, catalyst dosage and reaction time on catalytic reaction was investigated. The test results revealed that this reaction was greatly affected by reaction temperature, but it was not significantly affected by the CO pressure, the methanol dosage, the catalyst dosage and the reaction time. Under the optimal conditions, the conversion of ethylene oxide was equal to 92.24%, while the selectivity and yield of methyl 3-hydroxypropanoate reached 88.99% and 84.35%, respectively.展开更多
The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite ...The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite nanoparticle sample was reported which prepared by wet chemical co-precipitation method.The samples were sintered at three different temperatures viz.650℃,850℃ and 1050℃ for 12 h.The structural details like:lattice constant and distribution of cations in the tetrahedral and octahedral interstitial voids have been deduced through X-ray diffraction (XRD) data analysis.Lattice constant was found to increase with the increase in Zn2+ ions and sintering temperature.Theoretical intensity ratios of (220),(400),(440) planes were considered,as these reflections are sensitive to cations on the A and B sites.Close agreement of the theoretical intensity ratio with the intensity ratio observed from XRD pattern supports the occupancy of Zn2+ ions and Co2+ ions on the octahedral and tetrahedral sites,respectively.展开更多
Andean grasslands ecosystems are fragile environments with rigorous climatologic conditions and low and variable food for the grazing. The Apolobamba area is located in the Bolivian Andean Mountains. Its high grasslan...Andean grasslands ecosystems are fragile environments with rigorous climatologic conditions and low and variable food for the grazing. The Apolobamba area is located in the Bolivian Andean Mountains. Its high grasslands provide a natural habitat for wild and domestic camelids such as vicuna(Vicugna vicugna) and alpaca(Lama pacos). The botanical diversity plays an essential role in maintaining vital ecosystem functions. The objectives of this research were to determine the seasonal changes in soil properties, to study the vegetation changes during the wet and dry seasons and the influence of soil properties and camelid densities on the vegetation in the Apolobamba grasslands. Four zones with different vicuna populations were selected to be studied. The following soil parameters were determined: total organic carbon, total nitrogen, available phosphorous, cation exchange capacity, exchangeable cations, pH and texture. The vegetation season changes were studied through botanical identification, above-ground biomass, plant cover and species richness. Results showed that some soil properties such as C/N ratio, CEC, silt and clay percentages kept stable against the seasonal changes. Generally, soil nutrients were relatively higher during the dry season in the surface and subsurface. The results did not point out the predominant vegetation growth during the wet season. The seasonal vegetation growth depended on each species. Thegood soil fertility corresponded to the highest plant cover. Soil fertility presented no influence on the above-ground biomass of the collected species. The negative influence of camelid grazing on soil properties could not be assessed. However, overgrazing could affect some plant species. Therefore, protection is needed in order to preserve the biodiversity in the Andean mountain grasslands.展开更多
文摘Manganese oxide cluster cations Mnm180n+ were prepared by laser ablation and reacted with hydrogen sulfide (H2S) in a fast flow reactor under thermal collision conditions. A time-of-flight mass spectrometer was used to detect the cluster distributions before and after the interactions with H2S. The experiments suggest that oxygen-for-sulfur (O/S) ex- change reaction to release water took place in the reactor for most of the manganese oxide cluster cations: MnmlSOn++H2S→Mnm18On-1S++H218O. Density functional theory cal- culations were performed for reaction mechanisms of Mn202++H2S, Mn203++H2S, and Mn204++H2S. The computational results indicate these O/S exchange reactions are both thermodynamically and kinetically favorable, thus in good agreement with the experimental observations. The O/S exchange reactions identified in this gas-phase cluster study parallel similar behavior of related condensed phase reaction systems.
基金supported by the Guangdong Province Natural Science Foundation (No. 10152500002000019)the Maoming City Science and Technology Planning Project (NO.2008024)
文摘Methyl 3-hydroxypropanoate was synthesized via hydroesterification of ethylene oxide with CO in the presence of dicobalt octacarbonyl catalyst and methanol solvent. The catalyst exhibited high catalytic activity. The effect of reaction temperature, CO pressure, methanol dosage, catalyst dosage and reaction time on catalytic reaction was investigated. The test results revealed that this reaction was greatly affected by reaction temperature, but it was not significantly affected by the CO pressure, the methanol dosage, the catalyst dosage and the reaction time. Under the optimal conditions, the conversion of ethylene oxide was equal to 92.24%, while the selectivity and yield of methyl 3-hydroxypropanoate reached 88.99% and 84.35%, respectively.
文摘The most remarkable effect in spinel ferrites is the strong dependence of properties on the state of structural disorder and,in particular,on the cation distribution.The structural characterization of a Co-Zn ferrite nanoparticle sample was reported which prepared by wet chemical co-precipitation method.The samples were sintered at three different temperatures viz.650℃,850℃ and 1050℃ for 12 h.The structural details like:lattice constant and distribution of cations in the tetrahedral and octahedral interstitial voids have been deduced through X-ray diffraction (XRD) data analysis.Lattice constant was found to increase with the increase in Zn2+ ions and sintering temperature.Theoretical intensity ratios of (220),(400),(440) planes were considered,as these reflections are sensitive to cations on the A and B sites.Close agreement of the theoretical intensity ratio with the intensity ratio observed from XRD pattern supports the occupancy of Zn2+ ions and Co2+ ions on the octahedral and tetrahedral sites,respectively.
基金the Spanish Agency of Cooperation and Development (AECID)
文摘Andean grasslands ecosystems are fragile environments with rigorous climatologic conditions and low and variable food for the grazing. The Apolobamba area is located in the Bolivian Andean Mountains. Its high grasslands provide a natural habitat for wild and domestic camelids such as vicuna(Vicugna vicugna) and alpaca(Lama pacos). The botanical diversity plays an essential role in maintaining vital ecosystem functions. The objectives of this research were to determine the seasonal changes in soil properties, to study the vegetation changes during the wet and dry seasons and the influence of soil properties and camelid densities on the vegetation in the Apolobamba grasslands. Four zones with different vicuna populations were selected to be studied. The following soil parameters were determined: total organic carbon, total nitrogen, available phosphorous, cation exchange capacity, exchangeable cations, pH and texture. The vegetation season changes were studied through botanical identification, above-ground biomass, plant cover and species richness. Results showed that some soil properties such as C/N ratio, CEC, silt and clay percentages kept stable against the seasonal changes. Generally, soil nutrients were relatively higher during the dry season in the surface and subsurface. The results did not point out the predominant vegetation growth during the wet season. The seasonal vegetation growth depended on each species. Thegood soil fertility corresponded to the highest plant cover. Soil fertility presented no influence on the above-ground biomass of the collected species. The negative influence of camelid grazing on soil properties could not be assessed. However, overgrazing could affect some plant species. Therefore, protection is needed in order to preserve the biodiversity in the Andean mountain grasslands.