Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high...Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.展开更多
Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotatio...Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.展开更多
A new kind of hydrophobic ionic liquids [1-alkyl-3-(1-carboxylpropyl)im][PF6] has been synthesized, and their extraction.properties for Y(III) in the nitric acid medium was also investigated. The effects of extrac...A new kind of hydrophobic ionic liquids [1-alkyl-3-(1-carboxylpropyl)im][PF6] has been synthesized, and their extraction.properties for Y(III) in the nitric acid medium was also investigated. The effects of extractant concentration, equilibrium pH of aqueous phase, salt concentration, temperature etc. were discussed. The results show that this kind of Task-Specific Ionic Liquid (TSIL) needs to be saponified before being used for the Y(III) extraction, and the extraction is-acid dependent,-and the extraction efficiency increases with the aqueous phase acldity decreasing. Furthermore, the loaded organic phase is easy to be stripped; more than 95% Y(III) could be stripped from the loaded organic phase when the stripping acidity is higher than 0.07 mol-L-1. The slope analysis technique is used to investigate the extraction mechanism, and a possible cation-exchange extraction mechanism is proposed in the oresent extraction system.展开更多
文摘Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.
基金Project(2013AA064102)supported by the High-tech Research and Development Program of ChinaProject(51004114)supported by the National Natural Science Foundation of China+1 种基金Project(2007B52)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NCEP-08-0568)supported by the Program for New Century Excellent Talents in Chinese University
文摘Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.
基金Supported by the National Basic Research Program of China (2012CBA01202)the National Natural Science Foundation of China (51174184)
文摘A new kind of hydrophobic ionic liquids [1-alkyl-3-(1-carboxylpropyl)im][PF6] has been synthesized, and their extraction.properties for Y(III) in the nitric acid medium was also investigated. The effects of extractant concentration, equilibrium pH of aqueous phase, salt concentration, temperature etc. were discussed. The results show that this kind of Task-Specific Ionic Liquid (TSIL) needs to be saponified before being used for the Y(III) extraction, and the extraction is-acid dependent,-and the extraction efficiency increases with the aqueous phase acldity decreasing. Furthermore, the loaded organic phase is easy to be stripped; more than 95% Y(III) could be stripped from the loaded organic phase when the stripping acidity is higher than 0.07 mol-L-1. The slope analysis technique is used to investigate the extraction mechanism, and a possible cation-exchange extraction mechanism is proposed in the oresent extraction system.