锂离子电池高镍Li Ni_(x)Co_(y)Mn_(1-x-y)O_(2)(NCM,x≥0.6)正极材料因具有较高的能量密度和低成本等优势在电池领域备受关注,然而随着镍含量的升高,材料锂镍混排严重且热稳定性下降,导致高镍三元材料的循环稳定性和安全性恶化。本研...锂离子电池高镍Li Ni_(x)Co_(y)Mn_(1-x-y)O_(2)(NCM,x≥0.6)正极材料因具有较高的能量密度和低成本等优势在电池领域备受关注,然而随着镍含量的升高,材料锂镍混排严重且热稳定性下降,导致高镍三元材料的循环稳定性和安全性恶化。本研究针对高镍三元材料阳离子无序排列严重和循环稳定性差的问题,通过共沉淀法在前驱体合成过程中将Mg掺杂进入晶体,得到Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)(Mg1.0)活性材料,进一步利用液相法在材料表面包覆Al_(2)O_(3),成功制备Al_(2)O_(3)涂覆的Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)复合材料(Mg1.0@Al)。X射线衍射(XRD)结果表明,Mg掺杂能够有效扩大材料层间距,抑制阳离子混排;扫描电子显微镜(SEM)结合透射电子显微镜(TEM)结果表明,改性未对NCM811材料整体形貌造成影响,同时能够明显地观察到通过液相法在材料表面包覆的Al_(2)O_(3)涂层。电化学测试结果表明,镁铝协同改性可以稳定NCM811材料结构,减少阴极的界面极化,遏制材料与电解液发生副反应,使得材料表现出优越的电化学性能。Mg1.0@Al在1 C循环100次后表现出稳定的放电电压(ΔV=5.2 m V)、较低的电荷转移阻抗(R_(ct)=51.66Ω)和卓越的锂离子扩散系数(D_(Li)=4.05×10^(-14)cm^(2)/s)。同时,Mg1.0@Al材料在2.8~4.3V电压范围下,展现出卓越的循环性能和倍率性能:1 C下循环100次和400次后仍有188.58 m Ah/g和147.47 m Ah/g的放电比容量,容量保持率分别为95.18%和74.54%;5 C大倍率电流下,放电比容量高达146.3 m Ah/g。展开更多
采用碳酸盐共沉淀法合成出前驱体,然后通过高温固相法制备了富锂锰基材料0.6Li[Li1/3Mn2/3]O2·0.4Li NixMnyCo1-x-yO2(x〈0.6,y〉0).使用扫描电镜(SEM)、X射线衍射(XRD)以及电化学方法等手段进行了表征.高温原位XRD测试结果...采用碳酸盐共沉淀法合成出前驱体,然后通过高温固相法制备了富锂锰基材料0.6Li[Li1/3Mn2/3]O2·0.4Li NixMnyCo1-x-yO2(x〈0.6,y〉0).使用扫描电镜(SEM)、X射线衍射(XRD)以及电化学方法等手段进行了表征.高温原位XRD测试结果表明,随着温度和Ni含量增加,材料的晶胞参数发生较大变化,温度达800 o C时,高Ni组成的材料阳离子混排现象严重,并伴有尖晶石相生成.电性能测试结果表明,在充放电电压为2.0~4.6 V、电流密度20m A·g-1条件下,低Ni含量材料表现出较好的电化学性能,首周放电容量达260.1 m Ah·g-1,首次效率为83.2%,经过50次循环后放电容量保持率高达99.7%,且在电池循环过程中,放电电压平台下降较少.展开更多
以NaCl为熔剂,采用熔盐法制备了锂离子正极材料LiNi_(0.7)Mn_(0.3)O_2,通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及充放电曲线测试对材料结构、形貌以及对应的电化学性能进行了表征。结果表明:在熔盐与产物摩尔比例为4,温度850...以NaCl为熔剂,采用熔盐法制备了锂离子正极材料LiNi_(0.7)Mn_(0.3)O_2,通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及充放电曲线测试对材料结构、形貌以及对应的电化学性能进行了表征。结果表明:在熔盐与产物摩尔比例为4,温度850℃下保温8 h时,可得到晶格发育较好、阳离子混排度低的正极材料,该材料在2.75~4.2 V电压范围内0.2 C充放电,首次放电比容量达180 m Ah/g左右,循环50次后,比容量约保持在160 m Ah/g。而850℃下保温6 h合成的材料晶粒较小但不均匀,具有最大的首次放电比容量,其放电平台较窄,应用受限。展开更多
采用共沉淀高温固相反应法合成锂离子电池正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(811),通过掺入Li、Mg和Al元素,并采用SEM、XRD、电化学测试,研究掺杂对材料晶体结构和电化学性能影响规律.实验结果表明:共沉淀过程中三价金属离子(Mn^(...采用共沉淀高温固相反应法合成锂离子电池正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(811),通过掺入Li、Mg和Al元素,并采用SEM、XRD、电化学测试,研究掺杂对材料晶体结构和电化学性能影响规律.实验结果表明:共沉淀过程中三价金属离子(Mn^(3+)、Al^(3+))出现会促使少量α-Ni(OH)2形成,而Li^+、Mg^(2+)和Al^(3+)均溶入晶格无杂相析出.高温融锂反应中,三种掺杂元素显著削弱Ni^(2+)出现数量,抑制Ni^(2+)混排进入Li^+格位,大幅提升811基体可逆容量;Mg^(2+)、Al^(3+)掺杂进一步增强基体晶格稳定性,改善其循环性能;Li^+-Al^(3+)共掺杂使之达到最佳:首次充电效率ICE超过90%,0.2C倍率下50次循环容量达195.8 m Ah/g、容量保持率为96.2%.展开更多
基金supported by the National Natural Science Foundation of China(No.U21A20170)the Ministry of Science and Technology of China(No.2019YFE0100200,2019YFA0705703,and 2021YFB2501900)。
文摘锂离子电池高镍Li Ni_(x)Co_(y)Mn_(1-x-y)O_(2)(NCM,x≥0.6)正极材料因具有较高的能量密度和低成本等优势在电池领域备受关注,然而随着镍含量的升高,材料锂镍混排严重且热稳定性下降,导致高镍三元材料的循环稳定性和安全性恶化。本研究针对高镍三元材料阳离子无序排列严重和循环稳定性差的问题,通过共沉淀法在前驱体合成过程中将Mg掺杂进入晶体,得到Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)(Mg1.0)活性材料,进一步利用液相法在材料表面包覆Al_(2)O_(3),成功制备Al_(2)O_(3)涂覆的Li Ni_(0.8)Co_(0.1)Mn_(0.09)Mg_(0.01)O_(2)复合材料(Mg1.0@Al)。X射线衍射(XRD)结果表明,Mg掺杂能够有效扩大材料层间距,抑制阳离子混排;扫描电子显微镜(SEM)结合透射电子显微镜(TEM)结果表明,改性未对NCM811材料整体形貌造成影响,同时能够明显地观察到通过液相法在材料表面包覆的Al_(2)O_(3)涂层。电化学测试结果表明,镁铝协同改性可以稳定NCM811材料结构,减少阴极的界面极化,遏制材料与电解液发生副反应,使得材料表现出优越的电化学性能。Mg1.0@Al在1 C循环100次后表现出稳定的放电电压(ΔV=5.2 m V)、较低的电荷转移阻抗(R_(ct)=51.66Ω)和卓越的锂离子扩散系数(D_(Li)=4.05×10^(-14)cm^(2)/s)。同时,Mg1.0@Al材料在2.8~4.3V电压范围下,展现出卓越的循环性能和倍率性能:1 C下循环100次和400次后仍有188.58 m Ah/g和147.47 m Ah/g的放电比容量,容量保持率分别为95.18%和74.54%;5 C大倍率电流下,放电比容量高达146.3 m Ah/g。
文摘采用碳酸盐共沉淀法合成出前驱体,然后通过高温固相法制备了富锂锰基材料0.6Li[Li1/3Mn2/3]O2·0.4Li NixMnyCo1-x-yO2(x〈0.6,y〉0).使用扫描电镜(SEM)、X射线衍射(XRD)以及电化学方法等手段进行了表征.高温原位XRD测试结果表明,随着温度和Ni含量增加,材料的晶胞参数发生较大变化,温度达800 o C时,高Ni组成的材料阳离子混排现象严重,并伴有尖晶石相生成.电性能测试结果表明,在充放电电压为2.0~4.6 V、电流密度20m A·g-1条件下,低Ni含量材料表现出较好的电化学性能,首周放电容量达260.1 m Ah·g-1,首次效率为83.2%,经过50次循环后放电容量保持率高达99.7%,且在电池循环过程中,放电电压平台下降较少.
文摘以NaCl为熔剂,采用熔盐法制备了锂离子正极材料LiNi_(0.7)Mn_(0.3)O_2,通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及充放电曲线测试对材料结构、形貌以及对应的电化学性能进行了表征。结果表明:在熔盐与产物摩尔比例为4,温度850℃下保温8 h时,可得到晶格发育较好、阳离子混排度低的正极材料,该材料在2.75~4.2 V电压范围内0.2 C充放电,首次放电比容量达180 m Ah/g左右,循环50次后,比容量约保持在160 m Ah/g。而850℃下保温6 h合成的材料晶粒较小但不均匀,具有最大的首次放电比容量,其放电平台较窄,应用受限。
文摘采用共沉淀高温固相反应法合成锂离子电池正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(811),通过掺入Li、Mg和Al元素,并采用SEM、XRD、电化学测试,研究掺杂对材料晶体结构和电化学性能影响规律.实验结果表明:共沉淀过程中三价金属离子(Mn^(3+)、Al^(3+))出现会促使少量α-Ni(OH)2形成,而Li^+、Mg^(2+)和Al^(3+)均溶入晶格无杂相析出.高温融锂反应中,三种掺杂元素显著削弱Ni^(2+)出现数量,抑制Ni^(2+)混排进入Li^+格位,大幅提升811基体可逆容量;Mg^(2+)、Al^(3+)掺杂进一步增强基体晶格稳定性,改善其循环性能;Li^+-Al^(3+)共掺杂使之达到最佳:首次充电效率ICE超过90%,0.2C倍率下50次循环容量达195.8 m Ah/g、容量保持率为96.2%.