An inexpensive material, i.e., tetranuclear zinc(Ⅱ) complex, (Zn40(A/D)6) [AID = 7-azaindolate], was utilized as a cathode buffer in organic photovoltaic (OPV) devices, leading to the improvement of device pe...An inexpensive material, i.e., tetranuclear zinc(Ⅱ) complex, (Zn40(A/D)6) [AID = 7-azaindolate], was utilized as a cathode buffer in organic photovoltaic (OPV) devices, leading to the improvement of device performance. Compared to OPV devices based on a conventional cathode buffer of TPBi (1,3,5-tris(2-N-phenylbenzimidazolyl)benzene), although the freshly prepared devices showed similar performance, when heated to a series of high temperatures under air, the short circuit current and the open circuit voltage of the Zn40(AID)6 devices dropped more slowly, indicating the superiority of using Zn40(AID)6 as a cathode buffer over TPBi in OPV devices.展开更多
基金supported by the National Natural Science Foundation of China(20974046,61077021,61076016)New Century Excellent Talents funding from Ministry of Education in China(NCET-08-0697)National Basic Research Program of China(973 Program,2009CB930600)
文摘An inexpensive material, i.e., tetranuclear zinc(Ⅱ) complex, (Zn40(A/D)6) [AID = 7-azaindolate], was utilized as a cathode buffer in organic photovoltaic (OPV) devices, leading to the improvement of device performance. Compared to OPV devices based on a conventional cathode buffer of TPBi (1,3,5-tris(2-N-phenylbenzimidazolyl)benzene), although the freshly prepared devices showed similar performance, when heated to a series of high temperatures under air, the short circuit current and the open circuit voltage of the Zn40(AID)6 devices dropped more slowly, indicating the superiority of using Zn40(AID)6 as a cathode buffer over TPBi in OPV devices.