期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
ZY1-02DAHSI影像归一化阴影植被指数NSVI的波段选择及其构建
1
作者 许章华 陈玲燕 +6 位作者 项颂阳 邓西鹏 李一帆 俞辉 贺安琪 李增禄 郭孝玉 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第9期2626-2637,共12页
高光谱影像具有连续的地物光谱信息,在阴影检测方面具有巨大的潜力,而波段冗余度高需进行波段优选。归一化阴影植被指数(NSVI)能够扩大光谱差异,在高光谱影像中应用NSVI将更有效地识别阴影。资源一号02D卫星是我国首颗自主研发并成功运... 高光谱影像具有连续的地物光谱信息,在阴影检测方面具有巨大的潜力,而波段冗余度高需进行波段优选。归一化阴影植被指数(NSVI)能够扩大光谱差异,在高光谱影像中应用NSVI将更有效地识别阴影。资源一号02D卫星是我国首颗自主研发并成功运行的高光谱业务卫星,数据信噪比大、覆盖能力强,对该高光谱影像进行准确的阴影检测具有重要意义。以ZY1-02DAHSI影像为试验数据,提取并分析明亮区植被、阴影区植被及水体的光谱反射率;结合竞争自适应重加权采样(CARS)和连续投影算法(SPA)筛选能够有效区分典型地物的主要波段,综合考虑算法的特性进一步选出特征波段构建NSVI;通过步长法确定最佳阈值对影像进行分类,从像元值分布情况、分类精度和光谱增强效果等对比出构建NSVI的最佳波段,并结合不同的阴影指数、波段和影像进行综合评价,验证该方法的意义及普适性。结果表明:波段32和波段73是构建NSVI的最佳波段,分别对应红光波段和近红外波段;不同波段构建的NSVI分类精度均高于90%,由最佳波段构建的NSVI分类精度为94.33%,Kappa系数为0.8328,分类效果最优;NSVI能够增强典型地物间的光谱差异并缓解归一化植被指数的“易饱和”现象,在该影像中因水体累积产生的小波峰有助于提取水体;在ZY1-02DAHSI影像中NSVI的分类效果优于归一化阴影指数和阴影指数,于另一景影像的分类精度也达到93.55%,Kappa系数为0.8167。由算法筛选出的波段具有一定的代表性,最佳波段构建的NSVI在ZY1-02DAHSI影像中具有较好的阴影检测能力,对高光谱影像阴影检测及构建植被指数具有一定的借鉴和参考意义。 展开更多
关键词 归一化阴影植被指数NSVI ZY1-02DAHSI影像 竞争自适应重加权采样(CARS) 连续投影算法(SPA) 阴影检测
下载PDF
阴影植被指数SVI的构建及其在四种遥感影像中的应用效果 被引量:24
2
作者 许章华 刘健 +5 位作者 余坤勇 刘涛 龚从宏 唐梦雅 谢婉君 李增禄 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第12期3359-3365,共7页
阴影是遥感影像中普遍存在的干扰因素,如何有效去除阴影已成为共识,寻找一个有效的阴影检测指标是实现影像阴影去除的基础工作。以Landsat TM,ALOS AVNIR-2,CBERS。02B CCD及HJ-1 CCD影像为试验数据,立足于进一步增大阴影区植被与明亮... 阴影是遥感影像中普遍存在的干扰因素,如何有效去除阴影已成为共识,寻找一个有效的阴影检测指标是实现影像阴影去除的基础工作。以Landsat TM,ALOS AVNIR-2,CBERS。02B CCD及HJ-1 CCD影像为试验数据,立足于进一步增大阴影区植被与明亮区植被、水体间的差异,实现影像阴影的有效检测,构建了一个新的植被指数——阴影植被指数SVI,该指数既可保证明亮区植被、阴影区植被、水体区在近红外波段的绝对差异,又能对NDVI进行放大,消除可能存在的混淆现象,改变NDVI直方图的"偏态"现象,使植被指数值更接近于正态分布,更符合地面实际;该指数适用于近红外波段辐射特征差异较大的地物。采用精度评估法验证SVI对明亮区植被、阴影区植被、水体区三类地物的识别效果,结果显示,四幅影像总分类精度依次高达98.89%,100%,97.78%,97.78%,总Kappa系数依次为0.983 3,1,0.966 7,0.966 7,说明SVI对明亮区植被、阴影区植被及水体区具有极好的检测效果;对子影像、SVI与NDVI的统计指标对比亦说明,SVI可靠、有效,可以将其应用于影像阴影去除。 展开更多
关键词 阴影植被指数(SVI) Landsat TM ALOS AVNIR-2 CBERS-02B CCD HJ-1 CCD 应用效果
下载PDF
归一化阴影植被指数NSVI的构建及其应用效果(英文) 被引量:8
3
作者 许章华 林璐 +4 位作者 王前锋 黄旭影 刘健 余坤勇 陈崇成 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2018年第2期154-162,共9页
以ALOS AVNIR-2、CBERS-02B CCD、HJ1A-CCD2、Landsat 7 ETM四幅中分辨率遥感影像为试验数据,分析明亮区植被、阴影区植被与水体区的光谱特征与差异,基于近红外波段与归一化植被指数NDVI,构建归一化阴影植被指数NSVI,并评价其光谱差异... 以ALOS AVNIR-2、CBERS-02B CCD、HJ1A-CCD2、Landsat 7 ETM四幅中分辨率遥感影像为试验数据,分析明亮区植被、阴影区植被与水体区的光谱特征与差异,基于近红外波段与归一化植被指数NDVI,构建归一化阴影植被指数NSVI,并评价其光谱差异增强及分类效果.结果表明,NSVI大幅扩大了明亮区植被、阴影区植被、水体区间的光谱相对差异,降低光谱混淆概率;利用NSVI阈值法对四幅试验影像进行分类,总精度均大于97%,总Kappa在0.96以上,且阴影区植被的检测精度均在94%以上,总Kappa系数亦高于0.96.该指数利用地物在近红外波段的辐射差异,解决NDVI只能部分削弱地形影响的问题,扩大地物间的光谱差异,从而提升地物尤其是阴影检测的有效性,且不存在NDVI"易饱和"问题,可为遥感影像阴影去除提供一种新的解决方案. 展开更多
关键词 归一化阴影植被指数 明亮区植被 阴影植被 水体区 阴影检测
下载PDF
基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果 被引量:2
4
作者 胡新宇 许章华 +4 位作者 陈文慧 陈秋霞 王琳 刘辉 刘智才 《国土资源遥感》 CSCD 北大核心 2021年第2期55-65,共11页
开展高光谱遥感影像的阴影检测研究有助于去除阴影,并进一步发挥其高光谱分辨率优势。以多角度高光谱影像PROBA/CHRIS为数据源,尝试从增大明亮区植被、阴影区植被、水体区3种典型地物间光谱的差异入手,利用连续投影算法(successive proj... 开展高光谱遥感影像的阴影检测研究有助于去除阴影,并进一步发挥其高光谱分辨率优势。以多角度高光谱影像PROBA/CHRIS为数据源,尝试从增大明亮区植被、阴影区植被、水体区3种典型地物间光谱的差异入手,利用连续投影算法(successive projection algorithm,SPA)选取特征波段,并分析典型地物在CHRIS影像原始波段及归一化差值植被指数上的光谱特征,由此构建该影像的归一化阴影植被指数(normalized shaded vegetation index,NSVI)。基于步长法设置合理阈值,对影像予以分类,并从分类精度及光谱差异增强效果两个角度评价NSVI对CHRIS影像阴影的检测能力。结果表明:B9和B15可作为构建CHRIS影像NSVI的特征波段;基于NSVI阈值法对CHRIS多角度影像予以分类,各角度影像3种地物的分类精度均在94%以上,总Kappa均大于0.89,0°影像的分类效果最佳;经掩模获取分类后3种地物的子影像,子影像光谱均值有差异,但考虑标准差后则发现其光谱重叠现象较为明显,表明NSVI可增强典型地物间的光谱差异,提高了光谱混淆像元间的可分性。通过进一步比较NSVI与归一化阴影指数和阴影指数的阴影检测效果,亦证明了NSVI的阴影检测能力,说明所构建的NSVI能够应用于PROBA/CHRIS高光谱影像的阴影检测,可为该影像的阴影去除及阴影信息修复等工作提供重要支持。 展开更多
关键词 PROBA/CHRIS影像 归一化阴影植被指数NSVI 阴影检测 高光谱遥感 光谱特征
下载PDF
构建植被区分阴影消除植被指数提取山地植被信息 被引量:8
5
作者 柳晓农 江洪 汪小钦 《农业工程学报》 EI CAS CSCD 北大核心 2019年第20期135-144,共10页
山地植被信息在气候变化研究和生态环境保护等方面发挥着重要作用,遥感技术能够快速获取山地植被信息,但是存在山地地形阴影的影响以及山地植被信息混淆问题。该文以山地植被为研究对象,基于Landsat卫星遥感影像多光谱数据,分析山地植... 山地植被信息在气候变化研究和生态环境保护等方面发挥着重要作用,遥感技术能够快速获取山地植被信息,但是存在山地地形阴影的影响以及山地植被信息混淆问题。该文以山地植被为研究对象,基于Landsat卫星遥感影像多光谱数据,分析山地植被的主要特点,借鉴阴影消除植被指数(shadow eliminated vegetation index,SEVI)的构造原理及形式,提出了一种适用于山地植被覆盖遥感监测的植被指数算法-植被区分阴影消除植被指数(vegetation distinguished and shadow eliminated vegetation index,VDSEVI)。研究结果表明:相对于已有的其他植被指数,VDSEVI较好地消除了地形阴影的影响;VDSEVI的信息量大,植被覆盖的识别能力较强,较好地解决了植被信息混淆问题,能够更好地反映山地植被覆盖情况。不同土地覆盖类型的VDSEVI存在显著差异;阴影稀疏林地和相邻非阴影稀疏林地的相对误差较小,为3.428%;各土地覆盖类型样本VDSEVI标准差均小于0.06;植被覆盖样本VDSEVI与太阳入射角余弦值(cosi)的相关系数为-0.800。为验证VDSEVI在其他地区的适用性,将VDSEVI应用于内蒙古阿尔山和福州市闽侯县,结果表明VDSEVI同样适用。新疆那拉提、内蒙古阿尔山和福州市闽侯县3个区域基于VDSEVI阈值法的植被信息提取总体精度分别为84.136%、87.339%、86.709%,Kappa系数分别为0.799、0.788、0.791。 展开更多
关键词 遥感 植被 山地 信息提取 植被区分阴影消除植被指数(VDSEVI)
下载PDF
基于CASA模型和SEVI指数的福建省植被NPP遥感估算与分析 被引量:7
6
作者 江洪 虞嘉玮 +2 位作者 蒋世豪 黄贝莹 李玉洁 《海南大学学报(自然科学版)》 CAS 2021年第4期372-382,共11页
植被净初级生产力(NPP)是评估陆地生态系统碳汇和调节过程的重要指标,但遥感影像上崎岖地形造成的光学辐射传输畸变会降低植被NPP估算精度.为了消除地形对山区植被NPP模型估算的影响,以福建省为研究区,利用阴影消除植被指数(SEVI)改进C... 植被净初级生产力(NPP)是评估陆地生态系统碳汇和调节过程的重要指标,但遥感影像上崎岖地形造成的光学辐射传输畸变会降低植被NPP估算精度.为了消除地形对山区植被NPP模型估算的影响,以福建省为研究区,利用阴影消除植被指数(SEVI)改进CASA模型中的植被光合有效辐射吸收比率因子(FPAR)计算模型,进行福建省2005年和2015年的植被NPP估算和时空分布特征分析.研究结果显示SEVI反演的FPAR在阴影处的相对误差降低至0.53%,能有效消除地形阴影对FPAR的影响.采用消除了地形阴影影响的FPAR进行CASA模型反演福建省2005年和2015年的植被NPP平均值分别达到861.9 g·m^(-2)·a^(-1)和855.7g·m^(-2)·a^(-1).其中常绿阔叶林NPP最高,农用地NPP最低.不同地区植被NPP分布差异明显,西部内陆较高,东部沿海较低.月均植被NPP总体变化趋势与温度因子走势相同,相关系数分别为0.96和0.95,夏季月均植被NPP最高,达110 g·m^(-2)以上;冬季月均植被NPP最低,在20 g·m^(-2)以下. 展开更多
关键词 净初级生产力 阴影消除植被指数 地形校正 CASA模型 时空分析
下载PDF
山地丘陵区遥感影像阴影检测与去除方法 被引量:15
7
作者 刘健 许章华 +3 位作者 余坤勇 龚从宏 唐梦雅 谢婉君 《农业机械学报》 EI CAS CSCD 北大核心 2013年第10期238-241,237,共5页
阴影是山地丘陵区遥感影像最为普遍的干扰因素,去除阴影有助于提高影像解译和地物识别的准确性和有效性。构建了阴影植被指数(SVI),并提出应用波段回归模型法实现HJ-1多光谱影像阴影的去除。将该方法应用于试验区HJ-1数据,结果表明:SVI... 阴影是山地丘陵区遥感影像最为普遍的干扰因素,去除阴影有助于提高影像解译和地物识别的准确性和有效性。构建了阴影植被指数(SVI),并提出应用波段回归模型法实现HJ-1多光谱影像阴影的去除。将该方法应用于试验区HJ-1数据,结果表明:SVI可增大山地丘陵区水体、阴影区及明亮区之间的差异,利用阈值法可以实现影像阴影的有效检测;相关分析显示,各波段拟合模型R2均在0.80以上;比较阴影去除前、后影像的统计指标说明,在植被最为敏感,即受阴影影响最为严重的近红外波段,随着阴影的去除,波段平均值有了较大幅度的增大;去阴影后影像的标准差均比原影像要小,尤其是在近红外波段。试验结果表明,SVI对山地丘陵区HJ-1影像阴影的检测效果较好,而波段回归模型法可以较为有效地实现阴影的去除。 展开更多
关键词 山地丘陵区 多光谱影像 阴影检测 阴影植被指数 波段回归模型法
下载PDF
基于无人机影像阴影去除的苹果树冠层氮素含量遥感反演 被引量:11
8
作者 李美炫 朱西存 +3 位作者 白雪源 彭玉凤 田中宇 姜远茂 《中国农业科学》 CAS CSCD 北大核心 2021年第10期2084-2094,共11页
【目的】去除无人机多光谱遥感影像中的阴影,以提高苹果树冠层氮素含量反演模型精度。【方法】以山东省栖霞市苹果园为试验区,利用2019年6月采集的无人机多光谱影像,分别基于归一化阴影指数(normalized shaded vegetation index,NSVI)... 【目的】去除无人机多光谱遥感影像中的阴影,以提高苹果树冠层氮素含量反演模型精度。【方法】以山东省栖霞市苹果园为试验区,利用2019年6月采集的无人机多光谱影像,分别基于归一化阴影指数(normalized shaded vegetation index,NSVI)和归一化冠层阴影指数(normalized difference canopy shadow index,NDCSI)去除果树冠层多光谱影像中的阴影,提取非阴影区域果树冠层光谱信息;通过相关性分析方法,将基于原始光谱影像和基于NSVI、NDCSI去除阴影后提取的光谱数据与实测叶片氮素含量进行相关性分析,分别筛选氮素含量的敏感波段并构建光谱参量;采用偏最小二乘(partial least square,PLS)及支持向量机(support vector machine,SVM)方法构建果树冠层氮素含量反演模型并进行精度检验。【结果】绿光波段和红光波段为果树冠层氮素含量反演的敏感波段;阴影削弱了果树冠层的光谱信息,去除阴影前后,冠层多光谱各波段光谱差异较大,在红边波段及近红外波段尤为明显;基于2个阴影指数去除阴影后构建的氮素反演模型精度均有提升,最优模型为基于NDCSI去除阴影后构建的支持向量机氮素含量反演模型,该模型建模集R^(2)和RPD分别为0.774、1.828;验证集R^(2)和RPD分别为0.723、1.819。【结论】基于NDCSI可有效去除无人机多光谱果树冠层影像中的阴影,提高氮素含量反演精度,为果园氮素精准管理提供了有效参考。 展开更多
关键词 冠层阴影 阴影植被指数 无人机 多光谱 遥感
下载PDF
阴影消除植被指数(SEVI)去除地形本影和落影干扰的性能评估与应用 被引量:4
9
作者 江洪 袁亚伟 王森 《地球信息科学学报》 CSCD 北大核心 2019年第12期1977-1986,共10页
地形校正是崎岖山区遥感图像预处理的关键步骤。为了评估基于DEM数据的经验校正模型、山地辐射传输模型和波段组合优化计算模型在去除地形阴影效应方面的性能,并将其应用于福州市植被覆盖监测,本文采用C模型(和SCS+C模型)、6S+C模型和... 地形校正是崎岖山区遥感图像预处理的关键步骤。为了评估基于DEM数据的经验校正模型、山地辐射传输模型和波段组合优化计算模型在去除地形阴影效应方面的性能,并将其应用于福州市植被覆盖监测,本文采用C模型(和SCS+C模型)、6S+C模型和阴影消除植被指数(SEVI)进行评估、比较。采用1999年和2014年两期Landsat 5 TM卫星数据和相关的30 m ASTER GDEM V2高程数据,分别计算了C校正(和SCS+C校正)和6S+C校正后的归一化植被指数(NDVI)和比值植被指数(RVI)以及基于表观反射率数据的SEVI。通过目视比较、光谱特征比较以及太阳入射角余弦值(cos i)与植被指数的线性回归分析,可以看出C模型和SCS+C模型对本影具有较好的校正效果,但对落影的校正效果欠佳。NDVI和RVI的本影与邻近无阴影阳坡的相对误差分别从71.64%、52.57%降至4.80%、6.43%(C模型)和0.50%、9.94%(SCS+C模型),而落影与邻近无阴影阳坡的相对误差分别从62.01%、47.57%降至31.05%、24.40%(C模型)和33.42%、16.01%(SCS+C模型)。在NDVI的落影校正效果上,6S+C模型比C模型和SCS+C模型有一定的提升,本影与邻近无阴影阳坡之间的相对误差为8.63%,落影与邻近无阴影阳坡之间的相对误差为14.27%。而SEVI在消除本影和落影方面整体效果更好,本影和落影与邻近无阴影阳坡的相对误差分别为9.86%和10.53%。最后,基于SEVI对福州市1999-2014年的植被覆盖变化进行了监测。监测结果表明:①1999-2014年植被覆盖增加了893.61 km^2,植被增加区域主要分布在海拔250~1250 m范围内;②SEVI均值在坡度40°附近达到峰值。 展开更多
关键词 阴影消除植被指数(SEVI) 本影 落影 地形校正模型 植被监测 Landsat 5TM NDVI
原文传递
基于GDAL的遥感图像变化检测技术 被引量:3
10
作者 蒋世豪 江洪 《计算机工程与应用》 CSCD 北大核心 2020年第16期169-175,共7页
由于GDAL(Geospatial Data Abstraction Library)具有快速读取多种格式的遥感图像且能有效解析空间元数据等特点,利用它开发遥感图像处理算法具有明显的优势。结合GDAL及相应算法,开发了一套复杂地形山区植被遥感变化检测的技术,其中包... 由于GDAL(Geospatial Data Abstraction Library)具有快速读取多种格式的遥感图像且能有效解析空间元数据等特点,利用它开发遥感图像处理算法具有明显的优势。结合GDAL及相应算法,开发了一套复杂地形山区植被遥感变化检测的技术,其中包括利用阴影消除植被指数(Shadow Elimination Vegetation Index,SEVI)反演植被长势;利用图像差值法及最大类间方差法(OTSU)来提取植被长势明显变化点位;利用K均值聚类自动分割识别变化区域。将该方法用于武夷山自然保护区和闽江源自然保护区2016—2017年Landsat8 OLI遥感图像的植被长势变化检测,结果表明,这套遥感图像变化检测技术切实可行,能够有效识别遥感图像变化区域,并在复杂地形山区的植被长势监测中具有良好的应用价值。 展开更多
关键词 遥感图像 变化检测 聚类分析 植被长势 GDAL 阴影消除植被指数(SEVI)
下载PDF
SEVI指数消除4种十米级空间分辨率卫星影像地形阴影影响的效果评价
11
作者 马锦典 江洪 《遥感技术与应用》 CSCD 北大核心 2021年第5期1100-1110,共11页
为评价阴影消除植被指数(Shadow-Eliminated Vegetation Index,SEVI)对常用十米级不同空间分辨率遥感影像的地形阴影消除效果,采用2019年1月24~25日过境的Sentinel S2B(10 m)、GF-1(16 m)、Landsat 8 OLI(30 m)、GF-4(50 m)4种空间分辨... 为评价阴影消除植被指数(Shadow-Eliminated Vegetation Index,SEVI)对常用十米级不同空间分辨率遥感影像的地形阴影消除效果,采用2019年1月24~25日过境的Sentinel S2B(10 m)、GF-1(16 m)、Landsat 8 OLI(30 m)、GF-4(50 m)4种空间分辨率多光谱影像,计算了基于地表反射率的NDVI、SEVI和基于SCS+C模型校正后反射率的NDVI。评价方法包括植被指数数值分析、本影和落影相对误差分析、变异系数分析、植被指数与太阳入射角余弦值(cosi)散点图分析等。评价结果显示:4种空间分辨率的SEVI在本影相对误差分别为2.172%、1.422%、1.351%、1.060%;对应落影的相对误差分别为2.598%、2.801%、3.795%、2.711%;相应SEVI与cosi的决定系数分别为0.0173、0.0107、0.0011、0.0001;相应变异系数分别为10.036%、9.070%、8.051%、1.631%。研究结果表明,SEVI对10~50 m不同空间分辨率遥感影像的地形阴影校正效果良好,优于用SCS+C模型校正后的地表反射率计算的NDVI;遥感影像的地形阴影效应随着空间分辨率降低而减弱。 展开更多
关键词 阴影消除植被指数(SEVI) 本影 落影 SCS+C 空间分辨率
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部