阴极射线管(cathode ray tube, CRT)锥玻璃是一种典型的危险废弃物,含有大量PbO,BaO,SrO,Al_2O_3等多种重金属氧化物,因此需要对其进行安全处理和处置。本研究采用碳热还原强化玻璃分相方法将CRT锥玻璃制备成不含重金属的高硅氧玻璃粉...阴极射线管(cathode ray tube, CRT)锥玻璃是一种典型的危险废弃物,含有大量PbO,BaO,SrO,Al_2O_3等多种重金属氧化物,因此需要对其进行安全处理和处置。本研究采用碳热还原强化玻璃分相方法将CRT锥玻璃制备成不含重金属的高硅氧玻璃粉末。当处理温度为1000℃,B_2O_3的添加量为20%,保温时间为30 min时,CRT锥玻璃中Pb,Ba和Sr 3种重金属的酸浸脱除效率分别为99.81%,95.72%和100.00%,其他金属如Na,K,Ca,Al的脱除率分别为80.19%,99.92%,99.39%和78.56%,酸浸后残渣中SiO_2质量分数为93%左右。本研究为含重金属玻璃的资源化利用开辟了新的途径。展开更多
The recycled cathode ray tube(CRT)funnel glass was used as replacement of magnetite sand in the concrete,and its mass replacement rates were 0,20%,40%and 60%,respectively.The flowability,apparent density and mechanica...The recycled cathode ray tube(CRT)funnel glass was used as replacement of magnetite sand in the concrete,and its mass replacement rates were 0,20%,40%and 60%,respectively.The flowability,apparent density and mechanical properties of the radiation shielding concrete were investigated,while itsγ-ray radiation shielding parameters such as linear and mass attenuation coefficients(μandμm,respectively),thickness values of half-value layer(hHVL)and tenth-value layer(hTVL)were obtained by theoretical calculation,experiment and Monte.Carlo N-Particle(MCNP)simulation code.The experimental results show that the flowability of the concrete increases significantly,whilst its apparent density,compressive strength and static elastic modulus decrease slightly.The calculated,simulated and experimentalμm,μ,hHVL and hTVL values of all concrete samples are very consistent at the sameγ-ray photon energy,and it is feasible to use MCNP code to simulateγ-ray radiation shielding parameters of materials.The calculated results show that in a wide range ofγ-ray photon energy,theμm value of the concrete with CRT funnel glass replacing magnetite sand is improved effectively,and its radiation shielding performances are the same as those of the control concrete(M.1).By comprehensively comparing the flowability,mechanical properties andγ-ray radiation shielding properties,the concrete samples with 20%.40%funnel glass as fine aggregate have good performances.展开更多
基金Project(14JJ2083)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2015JC3090)supported by the Science and Technology Department of Hunan Province,China
文摘The recycled cathode ray tube(CRT)funnel glass was used as replacement of magnetite sand in the concrete,and its mass replacement rates were 0,20%,40%and 60%,respectively.The flowability,apparent density and mechanical properties of the radiation shielding concrete were investigated,while itsγ-ray radiation shielding parameters such as linear and mass attenuation coefficients(μandμm,respectively),thickness values of half-value layer(hHVL)and tenth-value layer(hTVL)were obtained by theoretical calculation,experiment and Monte.Carlo N-Particle(MCNP)simulation code.The experimental results show that the flowability of the concrete increases significantly,whilst its apparent density,compressive strength and static elastic modulus decrease slightly.The calculated,simulated and experimentalμm,μ,hHVL and hTVL values of all concrete samples are very consistent at the sameγ-ray photon energy,and it is feasible to use MCNP code to simulateγ-ray radiation shielding parameters of materials.The calculated results show that in a wide range ofγ-ray photon energy,theμm value of the concrete with CRT funnel glass replacing magnetite sand is improved effectively,and its radiation shielding performances are the same as those of the control concrete(M.1).By comprehensively comparing the flowability,mechanical properties andγ-ray radiation shielding properties,the concrete samples with 20%.40%funnel glass as fine aggregate have good performances.