The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of...The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of the WBE was carded out to analyze the performance of coating delamination and corrosion behavior of carbon steel beneath defective coating. The EIS data revealed that protective capability of coating decreased with immersion time and the degree of cathodic delamination showed a rapid rise. The current density distribution of WBE indicated that cathodic sites was located at the defect at the beginning of immersion and gradually spread into the intact coating. The cathodic regions were distinguished from the anodic area and distributed over the WBE. The changes of cathodic sites could reflect the deterioration process of defective coating. The cathodic area ratio was a more useful parameter than the cathodic delamination degree to evaluate the coating cathodic delamination. The polarity reversals of electrodes at the defect and beneath coating were observed. A simple discussion of relationship between the blister and the polarity reversal was made from a standpoint of electrochemical distribution. WBE method was able to map and record the changes of local cathodic sites beneath defective coating in real time, which could provide more detailed information about the local degradation of coating.展开更多
The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources whil...The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources while LiOH·H2O was used as the uniform Li source. The crystal structure characteristics of these samples produced were investigated by means of XRD, SEM, particle size distribution analysis and specific surface area testing. Their electrochemical properties were also studied by comparing their specific capacity, charge and discharge efficiency and cycle performance.展开更多
In this paper, design and construction of a modified cold molybdenum cathode Penning ion source was described. It consists of copper cylindrical anode with two cone ends and two movable cold molybdenum cathodes. The t...In this paper, design and construction of a modified cold molybdenum cathode Penning ion source was described. It consists of copper cylindrical anode with two cone ends and two movable cold molybdenum cathodes. The two cathodes were placed symmetrically at two ends of the anode. The modifications were decrease the length of the cylindrical anode to 4 cm instead of 6 cm, transform the copper emission electrode shape from plate of 40 mm length, 25 mm width and 2 mm thickness to disc of 20 mm diameter and 2 mm thickness and transform the inner uncovered area of the emission electrode from slit of 30 mm length and 10 mm width to disc of 5 mm diameter. The copper emission electrode was placed in the middle of the cylindrical anode and has aperture in the center of different diameters. Faraday cup was placed at different distances from the emission electrode aperture. The electrical discharge and the output ion beam characteristics of the modified ion source were measured at different pressures using argon gas. It was found that the optimum operating conditions of the modified ion source are; anode-cathode distance equal to 6 mm, emission electrode aperture diameter equal to 2.5 mm and emission electrode aperture, Faraday cup distance equals 3 cm. The effect of axial samarium cobalt permanent magnet of intensity equal to 300 Gauss on the discharge characteristics of the ion source was determined.展开更多
Two types of secondary emitter materials, the rare earth oxides(RE_2O_3) doped Mo cermet cathodes and the Y_2O_3-W matrix pressed cathode, are introduced in this paper. According to the calculation results, Y_2O_3 exh...Two types of secondary emitter materials, the rare earth oxides(RE_2O_3) doped Mo cermet cathodes and the Y_2O_3-W matrix pressed cathode, are introduced in this paper. According to the calculation results, Y_2O_3 exhibits the best secondary emission property among Y_2O_3,La_2O_3,CeO_2 and Lu_2O_3. The rare earth oxides co-doped Mo cathodes in which Y_2O_3 is the main active substance exhibit better secondary emission property than single RE_2O_3 doped Mo cathode. The results obtained by the Monte-Carlo calculation method show that the secondary electron emission property is strongly related to the grain size of the cathode. The decreasing of the grain size reduces the positive charge effect of the rare earth oxide due to the electrons supplement from the metal to the rare earth oxide, whereby the secondary electrons are easier to escape into the vacuum. Y_2O_3 is introduced into Ba-W cathode to fabricate a pressed Y_2O_3-W matrix dispenser cathode. The result indicates that the secondary emission yield of the Ba-W cathode increases from 2.13 to 3.51 by adding Y_2O_3, and the thermionic emission current density(J_0) could reach 4.18 A/cm^2 at 1050 ℃b.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51131005)
文摘The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of the WBE was carded out to analyze the performance of coating delamination and corrosion behavior of carbon steel beneath defective coating. The EIS data revealed that protective capability of coating decreased with immersion time and the degree of cathodic delamination showed a rapid rise. The current density distribution of WBE indicated that cathodic sites was located at the defect at the beginning of immersion and gradually spread into the intact coating. The cathodic regions were distinguished from the anodic area and distributed over the WBE. The changes of cathodic sites could reflect the deterioration process of defective coating. The cathodic area ratio was a more useful parameter than the cathodic delamination degree to evaluate the coating cathodic delamination. The polarity reversals of electrodes at the defect and beneath coating were observed. A simple discussion of relationship between the blister and the polarity reversal was made from a standpoint of electrochemical distribution. WBE method was able to map and record the changes of local cathodic sites beneath defective coating in real time, which could provide more detailed information about the local degradation of coating.
基金Supported by the National Natural Science Foundation of China (No. 20273047).
文摘The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources while LiOH·H2O was used as the uniform Li source. The crystal structure characteristics of these samples produced were investigated by means of XRD, SEM, particle size distribution analysis and specific surface area testing. Their electrochemical properties were also studied by comparing their specific capacity, charge and discharge efficiency and cycle performance.
文摘In this paper, design and construction of a modified cold molybdenum cathode Penning ion source was described. It consists of copper cylindrical anode with two cone ends and two movable cold molybdenum cathodes. The two cathodes were placed symmetrically at two ends of the anode. The modifications were decrease the length of the cylindrical anode to 4 cm instead of 6 cm, transform the copper emission electrode shape from plate of 40 mm length, 25 mm width and 2 mm thickness to disc of 20 mm diameter and 2 mm thickness and transform the inner uncovered area of the emission electrode from slit of 30 mm length and 10 mm width to disc of 5 mm diameter. The copper emission electrode was placed in the middle of the cylindrical anode and has aperture in the center of different diameters. Faraday cup was placed at different distances from the emission electrode aperture. The electrical discharge and the output ion beam characteristics of the modified ion source were measured at different pressures using argon gas. It was found that the optimum operating conditions of the modified ion source are; anode-cathode distance equal to 6 mm, emission electrode aperture diameter equal to 2.5 mm and emission electrode aperture, Faraday cup distance equals 3 cm. The effect of axial samarium cobalt permanent magnet of intensity equal to 300 Gauss on the discharge characteristics of the ion source was determined.
基金the National Natural Science Foundation of China(GrantNos 51471006,51534009,52621003,51225402)
文摘Two types of secondary emitter materials, the rare earth oxides(RE_2O_3) doped Mo cermet cathodes and the Y_2O_3-W matrix pressed cathode, are introduced in this paper. According to the calculation results, Y_2O_3 exhibits the best secondary emission property among Y_2O_3,La_2O_3,CeO_2 and Lu_2O_3. The rare earth oxides co-doped Mo cathodes in which Y_2O_3 is the main active substance exhibit better secondary emission property than single RE_2O_3 doped Mo cathode. The results obtained by the Monte-Carlo calculation method show that the secondary electron emission property is strongly related to the grain size of the cathode. The decreasing of the grain size reduces the positive charge effect of the rare earth oxide due to the electrons supplement from the metal to the rare earth oxide, whereby the secondary electrons are easier to escape into the vacuum. Y_2O_3 is introduced into Ba-W cathode to fabricate a pressed Y_2O_3-W matrix dispenser cathode. The result indicates that the secondary emission yield of the Ba-W cathode increases from 2.13 to 3.51 by adding Y_2O_3, and the thermionic emission current density(J_0) could reach 4.18 A/cm^2 at 1050 ℃b.