LB film of new hybrid Polyquinolin/Trilacunary heteropolytungstoilicate (PQ/SiW9) was prepared and characterized by π-A isotherm, UV-Vis absorption spectroscopy, atomic force microscope(AFM), fluorescence spectroscop...LB film of new hybrid Polyquinolin/Trilacunary heteropolytungstoilicate (PQ/SiW9) was prepared and characterized by π-A isotherm, UV-Vis absorption spectroscopy, atomic force microscope(AFM), fluorescence spectroscopy. The results indicated that they had good film-forming property on the air-water interface. The molecular areas for these monolayers at zero pressure were estimated to be 7.2 nm2·mol-1. The collapse pressure of LB film was 46 mN·m-1. Their I^V curves results showed that the title LB films had good electric conductivity and the conductivity of the LB film increased with monolayers number.展开更多
Manipulating the chemical reactivity of graphene toward oxygen reduced reduction(ORR)is of particular interest for both fundamental research and practical application in fuel cell.Deposing graphene on selected substra...Manipulating the chemical reactivity of graphene toward oxygen reduced reduction(ORR)is of particular interest for both fundamental research and practical application in fuel cell.Deposing graphene on selected substrate provides a structure-intact strategy to enhance its chemical reactivity due to substrate-induced charge and interface effect.Here,we report the graphene deposited on one-dimensional electride Y5Si3 as an effective ORR catalyst in acidic media.Thermodynamic calculations suggest that depositing graphene on electride materials can facilitate the protonation of O2,which is the rate-determining step based on the four-electron reaction pathway and thus promote the ORR activity.Further electronic calculations reveal that low work function(3.5 eV),superior electrical conductivity and slight charge transfer from substrate to graphene result in the enhanced ORR performance of graphene.These findings shed light on the rational design of ORR catalysts based on graphitic materials and emphasize the critical role of substrates for energy-related electrochemical reactions.展开更多
AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free...AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.展开更多
Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions...Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.展开更多
Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent year...Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.展开更多
Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the...Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology, and uniform granularity distribution in the particle size range of 2-3 μm.展开更多
The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivativ...The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivative spectra. The results show that the desilication ratio in the solution prepared by the addition of sodium silicate(solution-SS) is much greater than that in the solution by the addition of green liquor(solution-GL), and low alumina concentration in the sodium aluminate solutions facilitates the desilication process. It is also shown that alumino-silicate anions in the solution-GL, and Q^3 polymeric silicate anions in solution-SS are predominant, respectively. In addition, increasing the concentration of silica favors respectively the formation of the alumino-silicate or the Q^3 silicate anions in the solution-GL or the solution-SS. Therefore, it can be inferred that the low desilication ratio in the silicate-bearing aluminate solution is mainly attributed to the existence of alumino-silicate anions.展开更多
文摘LB film of new hybrid Polyquinolin/Trilacunary heteropolytungstoilicate (PQ/SiW9) was prepared and characterized by π-A isotherm, UV-Vis absorption spectroscopy, atomic force microscope(AFM), fluorescence spectroscopy. The results indicated that they had good film-forming property on the air-water interface. The molecular areas for these monolayers at zero pressure were estimated to be 7.2 nm2·mol-1. The collapse pressure of LB film was 46 mN·m-1. Their I^V curves results showed that the title LB films had good electric conductivity and the conductivity of the LB film increased with monolayers number.
基金supported by the National Natural Science Foundation of China (No.21573204 and No.21421063)Ministry of Science and Technology of China (No.2016YFA0200602)+2 种基金Anhui Initiative in Quantum Information Technologies, Fundamental Research Funds for the Central UniversitiesNational Program for Support of Top-notch Young Professional, Chinese Academy of Sciences Interdisciplinary Innovation TeamSuper Computer Center of USTC supercomputing center and CAS supercomputing center
文摘Manipulating the chemical reactivity of graphene toward oxygen reduced reduction(ORR)is of particular interest for both fundamental research and practical application in fuel cell.Deposing graphene on selected substrate provides a structure-intact strategy to enhance its chemical reactivity due to substrate-induced charge and interface effect.Here,we report the graphene deposited on one-dimensional electride Y5Si3 as an effective ORR catalyst in acidic media.Thermodynamic calculations suggest that depositing graphene on electride materials can facilitate the protonation of O2,which is the rate-determining step based on the four-electron reaction pathway and thus promote the ORR activity.Further electronic calculations reveal that low work function(3.5 eV),superior electrical conductivity and slight charge transfer from substrate to graphene result in the enhanced ORR performance of graphene.These findings shed light on the rational design of ORR catalysts based on graphitic materials and emphasize the critical role of substrates for energy-related electrochemical reactions.
文摘AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.
基金Project(41371475)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.
文摘Oxygen evolution reactions(OERs)as core components of energy conversion and storage technology systems,such as water splitting and rechargeable metal–air batteries,have attracted considerable attention in recent years.Transition metal compounds,particularly layered double hydroxides(LDHs),are considered as the most promising electrocatalysts owing to their unique two-dimensional layer structures and tunable components.However,heir poor intrinsic electrical conductivities and the limited number of active sites hinder their performances.The regulation of the electronic structure is an effective approach to improve the OER activity of LDHs,including cationic and anionic regulation,defect engineering,regulation of intercalated anions,and surface modifications.In this review,we summarize recent advances in the regulation of the electronic structures of LDHs used as electrocatalysts in OERs.In addition,we discuss the effects of each regulation type on OER activities.This review is expected to shed light on the development and design of effective OER electrocatalysts by summarizing various electronic structure regulation pathways and the effects on their catalytic performances.
基金Project(5JJ3010) supported by the Natural Science Foundation of Hunan Province, China
文摘Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology, and uniform granularity distribution in the particle size range of 2-3 μm.
基金Project(51274242)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by the Innovation-driven Plan in Central South University,China
文摘The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivative spectra. The results show that the desilication ratio in the solution prepared by the addition of sodium silicate(solution-SS) is much greater than that in the solution by the addition of green liquor(solution-GL), and low alumina concentration in the sodium aluminate solutions facilitates the desilication process. It is also shown that alumino-silicate anions in the solution-GL, and Q^3 polymeric silicate anions in solution-SS are predominant, respectively. In addition, increasing the concentration of silica favors respectively the formation of the alumino-silicate or the Q^3 silicate anions in the solution-GL or the solution-SS. Therefore, it can be inferred that the low desilication ratio in the silicate-bearing aluminate solution is mainly attributed to the existence of alumino-silicate anions.