This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used t...This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used to analyze SAA with mutual coupling. Then,on the basis of the Maximal Signal to Noise Ratio (MSNR) criteria, the GA is applied to the optimization of weighting elements and structure of SAA. Finally, the effectiveness of the analysis is evaluated by experimental antenna arrays.展开更多
A design method for light-emitting diode (LED) array is proposed to achieve a good uniform illumination distribution on target plane. By using random walk algorithm, the basic LED array modules are optimized ftrstly...A design method for light-emitting diode (LED) array is proposed to achieve a good uniform illumination distribution on target plane. By using random walk algorithm, the basic LED array modules are optimized ftrstly. The optimized basic arrays can generate uniform illumination distribution on their target plane. The optimized basic LED array mod- ules can be integrated into a large LED array module with more than tens of LEDs. In the large array, we can select a sub-array with K LEDs (K〉7), which can produce the good uniform illumination distribution. By this way, we design two LED arrays which consist of 21 and 25 LEDs, respectively. The 21-LED array and 25-LED array can generate uniform illumination distributions with the uniformities of 95% and 90%, respectively.展开更多
文摘This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used to analyze SAA with mutual coupling. Then,on the basis of the Maximal Signal to Noise Ratio (MSNR) criteria, the GA is applied to the optimization of weighting elements and structure of SAA. Finally, the effectiveness of the analysis is evaluated by experimental antenna arrays.
基金supported by the Opening Project of Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques(No.2012ADL03)
文摘A design method for light-emitting diode (LED) array is proposed to achieve a good uniform illumination distribution on target plane. By using random walk algorithm, the basic LED array modules are optimized ftrstly. The optimized basic arrays can generate uniform illumination distribution on their target plane. The optimized basic LED array mod- ules can be integrated into a large LED array module with more than tens of LEDs. In the large array, we can select a sub-array with K LEDs (K〉7), which can produce the good uniform illumination distribution. By this way, we design two LED arrays which consist of 21 and 25 LEDs, respectively. The 21-LED array and 25-LED array can generate uniform illumination distributions with the uniformities of 95% and 90%, respectively.