ABC95 array computer is a multi-function network computer based on FPGA technology. A notable feature of ABC95 array computer is the support of complex interconnection, which determines that the computer must have eno...ABC95 array computer is a multi-function network computer based on FPGA technology. A notable feature of ABC95 array computer is the support of complex interconnection, which determines that the computer must have enough I/O band and flexible communications between Pes. The authors designed the interconnecting network chips of ABC95 and realized a form of multi-function interconnection. The multi-function interconnecting network supports conflict-free access from processors to memory matrix and the MESH network of enhanced processors to processor communications. The design scheme has been proved feasible by experiment.展开更多
Integrated with an improved architectural vulnerability factor (AVF) computing model, a new architectural level soft error reliability analysis framework, SS-SERA (soft error reliability analysis based on SimpleSca...Integrated with an improved architectural vulnerability factor (AVF) computing model, a new architectural level soft error reliability analysis framework, SS-SERA (soft error reliability analysis based on SimpleScalar), was developed. SS-SERA was used to estimate the AVFs for various on-chip structures accurately. Experimental results show that the AVFs of issue queue (IQ), register update units (RUU), load store queue (LSQ) and functional unit (FU) are 38.11%, 22.17%, 23.05% and 24.43%, respectively. For address-based structures, i.e., levell data cache (LID), DTLB, level2 unified cache (L2U), levell instruction cache (LII) and ITLB, AVFs of their data arrays are 22.86%, 27.57%, 14.80%, 8.25% and 12.58%, lower than their tag arrays' AVFs which are 30.01%, 28.89%, 17.69%, 10.26% and 13.84%, respectively. Furthermore, using the AVF values obtained with SS-SERA, a qualitative and quantitative analysis of the AVF variation and predictability was performed for the structures studied. Experimental results show that the AVF exhibits significant variations across different structures and workloads, and is influenced by multiple microarchitectural metrics and their interactions. Besides, AVFs of SPEC2K floating point programs exhibit better predictability than SPEC2K integer programs.展开更多
Scaffolded DNA origami, a versatile method to construct high yield self- assembled DNA nanostructures, has been investigated to develop water-soluble nanoarrays for label free RNA detection, drug delivery, molecular p...Scaffolded DNA origami, a versatile method to construct high yield self- assembled DNA nanostructures, has been investigated to develop water-soluble nanoarrays for label free RNA detection, drug delivery, molecular positioning and recognition, and spatially ordered catalysis of single molecule chemical reactions. Its attributes that facilitate these applications suggest DNA origami as a candidate platform for intracellular targeting. After the interaction with targeted proteins in cell lysate, it is critical to separate and concentrate DNA origami nanoarrays from the crude cell lysate for further analysis. The recent development of microchip isotachophoresis (ITP) provides an alternative robust sample preconcentration and electrophoretic separation method. In this study, we present online ITP for stacking, separation and identification of aptamer-functionalized DNA origami and its thrombin complex in a simple cross-channel fused silica microfluidic chip. In particular, the method achieved separation of a binding complex in less than 5 min and 150-fold signal enhancement. We successfully separated and analyzed the thrombin bound origami-aptamer spiked into cell lysate using on-chip ITP. Our results demonstrate that origami/thrombin nanostructures can be effectively separated from cell lysate using this method and that the structural integrity of the concentrated binding complex is maintained as confirmed by atomic force microscopy (AFM). An ITP-based separation module can be easily coupled to other microchip pre- and post-processing steps to provide an integrated proteomics analysis platform for diagnostic applications.展开更多
Computational analysis is essential for transforming the masses of microarray datainto a mechanistic understanding of cancer. Here we present a method for findinggene functional modules of cancer from microarray data ...Computational analysis is essential for transforming the masses of microarray datainto a mechanistic understanding of cancer. Here we present a method for findinggene functional modules of cancer from microarray data and have applied it tocolon cancer. First, a colon cancer gene network and a normal colon tissue genenetwork were constructed using correlations between the genes. Then the modulesthat tended to have a homogeneous functional composition were identified by split-ting up the network. Analysis of both networks revealed that they are scale-free.Comparison of the gene functional modules for colon cancer and normal tissuesshowed that the modules’ functions changed with their structures.展开更多
文摘ABC95 array computer is a multi-function network computer based on FPGA technology. A notable feature of ABC95 array computer is the support of complex interconnection, which determines that the computer must have enough I/O band and flexible communications between Pes. The authors designed the interconnecting network chips of ABC95 and realized a form of multi-function interconnection. The multi-function interconnecting network supports conflict-free access from processors to memory matrix and the MESH network of enhanced processors to processor communications. The design scheme has been proved feasible by experiment.
基金Projects(60970036,60873016,61170045)supported by the National Natural Science Foundation of ChinaProjects(2009AA01Z102,2009AA01Z124)supported by the National High Technology Development Program of China
文摘Integrated with an improved architectural vulnerability factor (AVF) computing model, a new architectural level soft error reliability analysis framework, SS-SERA (soft error reliability analysis based on SimpleScalar), was developed. SS-SERA was used to estimate the AVFs for various on-chip structures accurately. Experimental results show that the AVFs of issue queue (IQ), register update units (RUU), load store queue (LSQ) and functional unit (FU) are 38.11%, 22.17%, 23.05% and 24.43%, respectively. For address-based structures, i.e., levell data cache (LID), DTLB, level2 unified cache (L2U), levell instruction cache (LII) and ITLB, AVFs of their data arrays are 22.86%, 27.57%, 14.80%, 8.25% and 12.58%, lower than their tag arrays' AVFs which are 30.01%, 28.89%, 17.69%, 10.26% and 13.84%, respectively. Furthermore, using the AVF values obtained with SS-SERA, a qualitative and quantitative analysis of the AVF variation and predictability was performed for the structures studied. Experimental results show that the AVF exhibits significant variations across different structures and workloads, and is influenced by multiple microarchitectural metrics and their interactions. Besides, AVFs of SPEC2K floating point programs exhibit better predictability than SPEC2K integer programs.
文摘Scaffolded DNA origami, a versatile method to construct high yield self- assembled DNA nanostructures, has been investigated to develop water-soluble nanoarrays for label free RNA detection, drug delivery, molecular positioning and recognition, and spatially ordered catalysis of single molecule chemical reactions. Its attributes that facilitate these applications suggest DNA origami as a candidate platform for intracellular targeting. After the interaction with targeted proteins in cell lysate, it is critical to separate and concentrate DNA origami nanoarrays from the crude cell lysate for further analysis. The recent development of microchip isotachophoresis (ITP) provides an alternative robust sample preconcentration and electrophoretic separation method. In this study, we present online ITP for stacking, separation and identification of aptamer-functionalized DNA origami and its thrombin complex in a simple cross-channel fused silica microfluidic chip. In particular, the method achieved separation of a binding complex in less than 5 min and 150-fold signal enhancement. We successfully separated and analyzed the thrombin bound origami-aptamer spiked into cell lysate using on-chip ITP. Our results demonstrate that origami/thrombin nanostructures can be effectively separated from cell lysate using this method and that the structural integrity of the concentrated binding complex is maintained as confirmed by atomic force microscopy (AFM). An ITP-based separation module can be easily coupled to other microchip pre- and post-processing steps to provide an integrated proteomics analysis platform for diagnostic applications.
基金the National Natural Science Foundation of China (Grant No. 60234020).
文摘Computational analysis is essential for transforming the masses of microarray datainto a mechanistic understanding of cancer. Here we present a method for findinggene functional modules of cancer from microarray data and have applied it tocolon cancer. First, a colon cancer gene network and a normal colon tissue genenetwork were constructed using correlations between the genes. Then the modulesthat tended to have a homogeneous functional composition were identified by split-ting up the network. Analysis of both networks revealed that they are scale-free.Comparison of the gene functional modules for colon cancer and normal tissuesshowed that the modules’ functions changed with their structures.