In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and th...In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and the predetermined threshold (separates the signal and noise ei- gen-values).Firstly,according to the estimation of noise subspace obtained by the power method,a novel source number detection method without eigen-decomposition is proposed based on QR de- composition.Furthermore,the eigenvectors of signal subspace can be determined according to Q matrix and then the directions of signals could be computed by the ESPRIT algorithm.To determine the source number and subspace,the computation complexity of the proposed algorithm is approximated as (2log_2 n+2.67)M^3,where n is the power of covariance matrix and M is the number of array ele- ments.Compared with the Single Vector Decomposition (SVD) based algorithm,it has a substantial computational saving with the approximation performance.The simulation results demonstrate its effectiveness and robustness.展开更多
Ultra-precision machining is an effective approach to achieve high dimension accuracy and surface finish required in optical and laser components. An extensive study using a two-axis diamond turning machine is conduct...Ultra-precision machining is an effective approach to achieve high dimension accuracy and surface finish required in optical and laser components. An extensive study using a two-axis diamond turning machine is conducted to machine the reflector arrays used for laser diode beam shaping. To position the workpiece precisely, theoretical analysis is made so that the dimensional accuracy can be achieved. Investigations into machining burr reduction are carried out. With the process developed, reflectors with optical surface finish of 8 nm in Ra and minimized burr size of less than 0.5 μm have been achieved.展开更多
Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtiss...Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtissue in an arrayed organization.The method illustrates a new macroencapsulation paradigm that may allow transplantation of a large number of cells with microscale spatial control,while maintaining an encapsulation device that is easily maneuverable and remaining integrated following transplantation.This study aims to investigate the design principles that relate to the translational application of micropatterned encapsulation membranes,namely,the control over the transplantation density/quantity of arrayed microtissues and the fidelity of pre-formed microtissues to micropatterns.Agarose hydrogel membranes with microwell patterns were used as a model encapsulation system to exemplify these principles.Our results show that high-density micropatterns can be generated in hydrogel membranes,which can potentially maximize the percentage volume of cellular content and thereby the transplantation efficiency of the encapsulation device.Direct seeding of microtissues demonstrates that microwell structures can efficiently position and organize pre-formed microtissues,suggesting the capability of micropatterned devices for manipulation of cellular transplants at multicellular or tissue levels.Detailed theoretical analysis was performed to provide insights into the relationship between micropatterns and the transplantation capacity of membrane-based encapsulation.Our study lays the ground for developing new macroencapsulation systems with microscale cellular/tissue patterns for regenerative transplantation.展开更多
基金Supported by the National Natural Science Foundation of China (No.60102005).
文摘In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and the predetermined threshold (separates the signal and noise ei- gen-values).Firstly,according to the estimation of noise subspace obtained by the power method,a novel source number detection method without eigen-decomposition is proposed based on QR de- composition.Furthermore,the eigenvectors of signal subspace can be determined according to Q matrix and then the directions of signals could be computed by the ESPRIT algorithm.To determine the source number and subspace,the computation complexity of the proposed algorithm is approximated as (2log_2 n+2.67)M^3,where n is the power of covariance matrix and M is the number of array ele- ments.Compared with the Single Vector Decomposition (SVD) based algorithm,it has a substantial computational saving with the approximation performance.The simulation results demonstrate its effectiveness and robustness.
文摘Ultra-precision machining is an effective approach to achieve high dimension accuracy and surface finish required in optical and laser components. An extensive study using a two-axis diamond turning machine is conducted to machine the reflector arrays used for laser diode beam shaping. To position the workpiece precisely, theoretical analysis is made so that the dimensional accuracy can be achieved. Investigations into machining burr reduction are carried out. With the process developed, reflectors with optical surface finish of 8 nm in Ra and minimized burr size of less than 0.5 μm have been achieved.
基金supported by the Key New Drug Creation and Manufacturing Program(2011ZX09102-010-03)the National Natural Science Foundation of China(31170933)
文摘Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtissue in an arrayed organization.The method illustrates a new macroencapsulation paradigm that may allow transplantation of a large number of cells with microscale spatial control,while maintaining an encapsulation device that is easily maneuverable and remaining integrated following transplantation.This study aims to investigate the design principles that relate to the translational application of micropatterned encapsulation membranes,namely,the control over the transplantation density/quantity of arrayed microtissues and the fidelity of pre-formed microtissues to micropatterns.Agarose hydrogel membranes with microwell patterns were used as a model encapsulation system to exemplify these principles.Our results show that high-density micropatterns can be generated in hydrogel membranes,which can potentially maximize the percentage volume of cellular content and thereby the transplantation efficiency of the encapsulation device.Direct seeding of microtissues demonstrates that microwell structures can efficiently position and organize pre-formed microtissues,suggesting the capability of micropatterned devices for manipulation of cellular transplants at multicellular or tissue levels.Detailed theoretical analysis was performed to provide insights into the relationship between micropatterns and the transplantation capacity of membrane-based encapsulation.Our study lays the ground for developing new macroencapsulation systems with microscale cellular/tissue patterns for regenerative transplantation.