Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriateparameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricula...Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriateparameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventriculartachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system oftenconsists of a large number of neurons with complex connections. In this paper, we theoretically study the transitionfrom spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of theHindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiralwave is developed and selected as the initial state, then the bifurcation parameters are changed to different values toobserve the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave,respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition fromspiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of meanmembrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharpchanging points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition fromspiral wave to other states. And the results are independent of the number of neurons we used.展开更多
The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow o...The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow oil exploration, but has a lack of adequate research in deep exploration. In order to study the selection of work parameters and field conditions of the air gun source in deep exploration, this paper does the following work: (1) analyze the characteristics of the air gun source using air gun experiments; (2) simulate the air gun signal and air gun-array signal based on the theory of free bubble oscillation to analyze the influence of bubble oscillation and study the wavelet energy and spectrum characteristics needed in deep exploration; (3) on the basis of theoretical simulation, study the influence of work parameters, such as air-gun capacity, work stress and depth on air gun signal and analyze the influence of air-gun array inspired moment and spacing of different air guns on air gun-array signals; and (4) study energy reflection and transmission coefficients for different underwater interfaces, which is very useful for choosing suitable field conditions.展开更多
This work presents the potentiostatic anodization study of titania nanotube array films fabricated in fluoride-based organic electrolytes including DEG (diethylene glycol) and EG (ethylene glycol). The work focuse...This work presents the potentiostatic anodization study of titania nanotube array films fabricated in fluoride-based organic electrolytes including DEG (diethylene glycol) and EG (ethylene glycol). The work focuses on the effect of important anodization parameters such as applied voltage, anodization time, and electrolyte type on nanotube morphologies and corresponding surface properties. Depending upon unique nanotube formation structures obtained from each anodizing electrolyte, wettability of the nanotube array layer has been determined by means of the contact angle measurement. The EG nanotube array films with close-packing cell orientation are found to show hydrophilic behavior. While the well separated DEG nanotube array films are found to exhibit hydrophobic behavior, with the characteristics of more discrete, wider cell separation obtained through manipulating the electrolyte conditions and the fabrication techniques offering considerable prospects for developing the superhydrophobic sample surface. Such formation structures observed for the DEG fabricated nanotube is believed to play a prominent role in determining the surface wettability of the anodized nanotube array film. The achieved result in this work is anticipated to pave the way to other relevant applications, where interfacial properties are critically concerned.展开更多
This paper considers experimental situations where the interested effects have to be or- thogonal to a set of nonnegligible effects. It is shown that various types of orthogonal arrays with mixed strength are A-optima...This paper considers experimental situations where the interested effects have to be or- thogonal to a set of nonnegligible effects. It is shown that various types of orthogonal arrays with mixed strength are A-optimal for estimating the parameters in ANOVA high dimension model representation. Both cases including interactions or not are considered in the model. In particularly, the estimations of all main effects are A-optimal in a mixed strength (2, 2)3 orthogonal array and the estimations of all main effects and two-factor interactions in G~ x G~ are A-optimal in a mixed strength (2, 2)4 orthogonal array. The properties are also illustrated through a simulation study.展开更多
We propose the generation of photonic EPR state from quadratic waveguide array. Both the propagation constant and the nonlinearity in the array are designed to possess a periodical modulation along the propagation dir...We propose the generation of photonic EPR state from quadratic waveguide array. Both the propagation constant and the nonlinearity in the array are designed to possess a periodical modulation along the propagation direction.This ensures that the photon pairs can be generated efficiently through the quasi-phase-matching spontaneous parametric down conversion by holding the spatial EPR entanglement in the fashion of correlated position and anticorrelated momentum. The Schmidt number which denotes the degree of EPR entanglement is calculated and it can approach a high value when the number of illuminated waveguide channels and the length of the waveguide array are properly chosen. These results suggest the quadratic waveguide array as a compact platform for engineering photonic quantum states in a high-dimensional Hilbert space.展开更多
基金Supported by National Nature Science of Foundation of China under Grant Nos. 10747005, 10847140the Natural Science of Lanzhou University of Technology under Grant No. Q200706
文摘Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriateparameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventriculartachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system oftenconsists of a large number of neurons with complex connections. In this paper, we theoretically study the transitionfrom spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of theHindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiralwave is developed and selected as the initial state, then the bifurcation parameters are changed to different values toobserve the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave,respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition fromspiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of meanmembrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharpchanging points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition fromspiral wave to other states. And the results are independent of the number of neurons we used.
基金sponsored by the National Natural Science Foundation of China (40730318 and 40574019)the key project of social welfare of the Ministry of Science and Technology,PRC(2005DIA3J117) +1 种基金seismic industry research project (200808002)basic scientific research of Institute of Geophysics CEA(DQJB07A01) ,China
文摘The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow oil exploration, but has a lack of adequate research in deep exploration. In order to study the selection of work parameters and field conditions of the air gun source in deep exploration, this paper does the following work: (1) analyze the characteristics of the air gun source using air gun experiments; (2) simulate the air gun signal and air gun-array signal based on the theory of free bubble oscillation to analyze the influence of bubble oscillation and study the wavelet energy and spectrum characteristics needed in deep exploration; (3) on the basis of theoretical simulation, study the influence of work parameters, such as air-gun capacity, work stress and depth on air gun signal and analyze the influence of air-gun array inspired moment and spacing of different air guns on air gun-array signals; and (4) study energy reflection and transmission coefficients for different underwater interfaces, which is very useful for choosing suitable field conditions.
文摘This work presents the potentiostatic anodization study of titania nanotube array films fabricated in fluoride-based organic electrolytes including DEG (diethylene glycol) and EG (ethylene glycol). The work focuses on the effect of important anodization parameters such as applied voltage, anodization time, and electrolyte type on nanotube morphologies and corresponding surface properties. Depending upon unique nanotube formation structures obtained from each anodizing electrolyte, wettability of the nanotube array layer has been determined by means of the contact angle measurement. The EG nanotube array films with close-packing cell orientation are found to show hydrophilic behavior. While the well separated DEG nanotube array films are found to exhibit hydrophobic behavior, with the characteristics of more discrete, wider cell separation obtained through manipulating the electrolyte conditions and the fabrication techniques offering considerable prospects for developing the superhydrophobic sample surface. Such formation structures observed for the DEG fabricated nanotube is believed to play a prominent role in determining the surface wettability of the anodized nanotube array film. The achieved result in this work is anticipated to pave the way to other relevant applications, where interfacial properties are critically concerned.
基金the National Natural Science Foundation of China under Grant Nos.11171065,11301073the Natural Science Foundation of Jiangsu under Grant No.BK20141326+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20120092110021Scientific Research Foundation of Graduate School of Southeast University under Grant No.YBJJ1444
文摘This paper considers experimental situations where the interested effects have to be or- thogonal to a set of nonnegligible effects. It is shown that various types of orthogonal arrays with mixed strength are A-optimal for estimating the parameters in ANOVA high dimension model representation. Both cases including interactions or not are considered in the model. In particularly, the estimations of all main effects are A-optimal in a mixed strength (2, 2)3 orthogonal array and the estimations of all main effects and two-factor interactions in G~ x G~ are A-optimal in a mixed strength (2, 2)4 orthogonal array. The properties are also illustrated through a simulation study.
基金Supported by the State Key Program for Basic Research in China under Grant No.2012CB921802 the National Natural Science Foundations of China under Grant Nos.91321312,11321063 and 11422438
文摘We propose the generation of photonic EPR state from quadratic waveguide array. Both the propagation constant and the nonlinearity in the array are designed to possess a periodical modulation along the propagation direction.This ensures that the photon pairs can be generated efficiently through the quasi-phase-matching spontaneous parametric down conversion by holding the spatial EPR entanglement in the fashion of correlated position and anticorrelated momentum. The Schmidt number which denotes the degree of EPR entanglement is calculated and it can approach a high value when the number of illuminated waveguide channels and the length of the waveguide array are properly chosen. These results suggest the quadratic waveguide array as a compact platform for engineering photonic quantum states in a high-dimensional Hilbert space.