近年来,利用稀疏阵列估计信源的波达方向(Direction of Arrival,DOA)已成为阵列信号处理领域的研究热点问题之一。相较于传统的均匀线阵,稀疏阵列凭借其大孔径、高自由度、低互耦率、低冗余度、低开销和布阵灵活等优良特性,吸引了学术...近年来,利用稀疏阵列估计信源的波达方向(Direction of Arrival,DOA)已成为阵列信号处理领域的研究热点问题之一。相较于传统的均匀线阵,稀疏阵列凭借其大孔径、高自由度、低互耦率、低冗余度、低开销和布阵灵活等优良特性,吸引了学术界广泛关注和系统性研究。同时,为充分发挥稀疏阵列的巨大优势,学者们已经从不同角度开发了一系列与之相适应的DOA估计算法,以进一步提高可分辨信源的数量和角度估计精度。本文在构建稀疏阵列信号模型和整理稀疏阵列相关术语的基础上,详细介绍了稀疏阵列结构设计及DOA估计算法的发展历程和代表性研究成果。在稀疏阵列结构设计方面,围绕自由度、互耦率和冗余度等核心指标,深入剖析了各类稀疏阵列结构的设计思想,并着重描述了嵌套和互质两类结构性稀疏阵列的连续自由度和自由度特征;在稀疏阵列DOA估计方面,根据信号参量构造原理的不同,阐述了基于物理阵列处理和虚拟阵列处理的两种测向理论,并分析了各自方法的适用条件和性能优势。此外,本文还回顾了稀疏阵列DOA估计的克拉美罗界(Cramér-Rao bound,CRB),为评估不同阵列和算法的优劣提供了重要依据。最后,通过梳理现有研究成果中存在的不足,对未来研究方向进行了展望,力图为稀疏阵列DOA估计的工程应用提供理论依据和技术支撑。展开更多
传统基于张量分解的稀疏阵列波达方向(direction of arrival,DOA)估计,通常将协方差矩阵直接进行划分来构建满秩张量,但这种方法没有考虑数据间的结构信息,使得信息利用不充分。针对这一问题,提出了一种基于数据间耦合关系的张量分解算...传统基于张量分解的稀疏阵列波达方向(direction of arrival,DOA)估计,通常将协方差矩阵直接进行划分来构建满秩张量,但这种方法没有考虑数据间的结构信息,使得信息利用不充分。针对这一问题,提出了一种基于数据间耦合关系的张量分解算法。根据信息间的结构特点,构建在俯仰和方位维度能分别利用耦合特性的两个三阶张量。通过张量分解从中估计出两组角度值,将其中利用耦合特性估计出的角度值作为DOA值,伴随产生的估计值用作角度匹配。仿真结果验证了所提算法可进一步提升对数据间耦合信息的利用,有效提高二维DOA估计的精度。展开更多
采用稀疏阵列进行波达方向(Direction of Arrival,DOA)估计时往往会产生虚拟孔洞,它严重限制了阵列孔径的扩展与阵元自由度的提升。由于孔洞位置与初始阵列阵元数目、排布方式有关,故较难对其进行预填充。为此,提出了一种基于平行稀疏...采用稀疏阵列进行波达方向(Direction of Arrival,DOA)估计时往往会产生虚拟孔洞,它严重限制了阵列孔径的扩展与阵元自由度的提升。由于孔洞位置与初始阵列阵元数目、排布方式有关,故较难对其进行预填充。为此,提出了一种基于平行稀疏阵列虚拟孔洞填充的二维DOA估计算法,利用双稀疏线阵扩展生成两个不同的虚拟阵列,并利用其中一阵的信息去填充另一阵的孔洞。为尽可能减少总阵元数目,采用提前计算的孔洞位置去设计另一阵列的排布规则,并通过求根多重信号分类(Root-Mutiple Signal Classification,Root-MUSIC)算法替代传统的二维谱峰搜索算法完成对入射角度的估计与自动匹配。实验仿真结果验证了所提算法相比传统算法能以更少的阵元获得更高的估计精度。展开更多
文摘近年来,利用稀疏阵列估计信源的波达方向(Direction of Arrival,DOA)已成为阵列信号处理领域的研究热点问题之一。相较于传统的均匀线阵,稀疏阵列凭借其大孔径、高自由度、低互耦率、低冗余度、低开销和布阵灵活等优良特性,吸引了学术界广泛关注和系统性研究。同时,为充分发挥稀疏阵列的巨大优势,学者们已经从不同角度开发了一系列与之相适应的DOA估计算法,以进一步提高可分辨信源的数量和角度估计精度。本文在构建稀疏阵列信号模型和整理稀疏阵列相关术语的基础上,详细介绍了稀疏阵列结构设计及DOA估计算法的发展历程和代表性研究成果。在稀疏阵列结构设计方面,围绕自由度、互耦率和冗余度等核心指标,深入剖析了各类稀疏阵列结构的设计思想,并着重描述了嵌套和互质两类结构性稀疏阵列的连续自由度和自由度特征;在稀疏阵列DOA估计方面,根据信号参量构造原理的不同,阐述了基于物理阵列处理和虚拟阵列处理的两种测向理论,并分析了各自方法的适用条件和性能优势。此外,本文还回顾了稀疏阵列DOA估计的克拉美罗界(Cramér-Rao bound,CRB),为评估不同阵列和算法的优劣提供了重要依据。最后,通过梳理现有研究成果中存在的不足,对未来研究方向进行了展望,力图为稀疏阵列DOA估计的工程应用提供理论依据和技术支撑。
文摘稀疏阵列布阵灵活,增大阵列孔径的同时还能减少阵元间耦合,但基于稀疏阵列的传统波达方向估计会导致角度模糊混叠,带来估计精度差和稳健性不足的问题。针对以上问题,提出一种适用于稀疏阵列波达方向估计的加权截断奇异值投影(weighted truncated singular value projection,WT-SVP)的鲁棒矩阵填充算法。在填充迭代过程中根据奇异值的大小分配权重,突出大奇异值包含的阵列信息,减少小奇异值中不必要的噪声信息,从而优化传统奇异值投影算法。该算法可以实现稀疏阵列的孔洞信息恢复,对不连续阵元充分利用,同时WT-SVP填充算法实现了稀疏阵列波达方向估计的高精度、高分辨以及在低信噪比、低快拍时的高鲁棒性。
文摘传统基于张量分解的稀疏阵列波达方向(direction of arrival,DOA)估计,通常将协方差矩阵直接进行划分来构建满秩张量,但这种方法没有考虑数据间的结构信息,使得信息利用不充分。针对这一问题,提出了一种基于数据间耦合关系的张量分解算法。根据信息间的结构特点,构建在俯仰和方位维度能分别利用耦合特性的两个三阶张量。通过张量分解从中估计出两组角度值,将其中利用耦合特性估计出的角度值作为DOA值,伴随产生的估计值用作角度匹配。仿真结果验证了所提算法可进一步提升对数据间耦合信息的利用,有效提高二维DOA估计的精度。
文摘采用稀疏阵列进行波达方向(Direction of Arrival,DOA)估计时往往会产生虚拟孔洞,它严重限制了阵列孔径的扩展与阵元自由度的提升。由于孔洞位置与初始阵列阵元数目、排布方式有关,故较难对其进行预填充。为此,提出了一种基于平行稀疏阵列虚拟孔洞填充的二维DOA估计算法,利用双稀疏线阵扩展生成两个不同的虚拟阵列,并利用其中一阵的信息去填充另一阵的孔洞。为尽可能减少总阵元数目,采用提前计算的孔洞位置去设计另一阵列的排布规则,并通过求根多重信号分类(Root-Mutiple Signal Classification,Root-MUSIC)算法替代传统的二维谱峰搜索算法完成对入射角度的估计与自动匹配。实验仿真结果验证了所提算法相比传统算法能以更少的阵元获得更高的估计精度。