Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO...Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.展开更多
Orthogonal arrays (OAs), mixed level or fixed level (asymmetric or symmetric), are useful in the design of various experiments. They are also a fundamental tool in the construction of various combinatorial configurati...Orthogonal arrays (OAs), mixed level or fixed level (asymmetric or symmetric), are useful in the design of various experiments. They are also a fundamental tool in the construction of various combinatorial configurations. In this paper, we establish a general "expansive replacement method" for constructing mixedlevel OAs of an arbitrary strength. As a consequence, a positive answer to the question about orthogonal arrays posed by Hedayat, Sloane and Stufken is given. Some series of mixed level OAs of strength ≥3 are produced.展开更多
基金Supported by the Aeronautic Science Foundation of China(2008ZC52026)the Innovation Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.
基金supported by National Natural Science Foundation of China (Grant Nos.11271280 and 10831002)
文摘Orthogonal arrays (OAs), mixed level or fixed level (asymmetric or symmetric), are useful in the design of various experiments. They are also a fundamental tool in the construction of various combinatorial configurations. In this paper, we establish a general "expansive replacement method" for constructing mixedlevel OAs of an arbitrary strength. As a consequence, a positive answer to the question about orthogonal arrays posed by Hedayat, Sloane and Stufken is given. Some series of mixed level OAs of strength ≥3 are produced.