A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tun...A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.展开更多
In this paper,based on the field-programmable gate array(FPGA)xc5vlx220 of Xilinx Company,the FPGA verification method for application specific integrated circuit(ASIC)design is introduced.Firstly,the basic principles...In this paper,based on the field-programmable gate array(FPGA)xc5vlx220 of Xilinx Company,the FPGA verification method for application specific integrated circuit(ASIC)design is introduced.Firstly,the basic principles of FPGA verification are introduced.Then,the structure of the FPGA board and the verification methods are illustrated.Finally,the workflow of FPGA verification for audio video coding standard(AVS)decoder and the method of restoring images are introduced in detail.The FPGA resources occupancy is shown and analyzed.The result shows that FPGA can verify the ASIC rapidly and effectively so as to shorten the development cycle.展开更多
Most biological tissues are supple and elastic, while current electronic devices fabricated by semiconductors and metals are usually stiff and brittle. As a result, implanted electronic devices can irritate and damage...Most biological tissues are supple and elastic, while current electronic devices fabricated by semiconductors and metals are usually stiff and brittle. As a result, implanted electronic devices can irritate and damage surrounding tissues, causing immune reaction and scarring. In this work, we develop stretchable microelectrode arrays, with the development of a novel soft lithography technology, which are designed and fabricated with a polymer/stretchable metal/polymer sandwich structure. With the great deformability of stretch, compression, bend and twisting, while preserving electrical property, this technology overcomes the fundamental mismatch of mechanical properties between biological tissues and electronic devices, and provides highly-compliant, confonnal and stretchable bio-electronic interfaces. Here we also describe the following three applications of the stretchable electrode arrays: a. monitoring intracranial electroencephalography (EEG); b. stimulating peripheral nerves to drive muscles; c. monitoring epicardial electrocardiography (ECG). Stretchable microelectrode arrays create a promising field in biomedical applications for its better modulus match with biological tissues and robust mechanical and electrical properties. They allow for construction of electronic integrated circuits spread over on complex and dynamic curved surfaces, providing a much friendlier bio-electronic interface for diagnosis, treatment and in- telligent bio-control.展开更多
ABC95 array computer is a multi-function network computer based on FPGA technology. A notable feature of ABC95 array computer is the support of complex interconnection, which determines that the computer must have eno...ABC95 array computer is a multi-function network computer based on FPGA technology. A notable feature of ABC95 array computer is the support of complex interconnection, which determines that the computer must have enough I/O band and flexible communications between Pes. The authors designed the interconnecting network chips of ABC95 and realized a form of multi-function interconnection. The multi-function interconnecting network supports conflict-free access from processors to memory matrix and the MESH network of enhanced processors to processor communications. The design scheme has been proved feasible by experiment.展开更多
A fully integrated CMOS bio-chip is designed in a SMIC 0.18μm CMOS mixed signal process and successfully integrated with a novel bio-nano-system. The proposed circuit integrates an array of 4 × 4 (16 pixels) o...A fully integrated CMOS bio-chip is designed in a SMIC 0.18μm CMOS mixed signal process and successfully integrated with a novel bio-nano-system. The proposed circuit integrates an array of 4 × 4 (16 pixels) of 19μm × 19μm electrodes,a counter electrode, a current mode preamplifier circuit (CMPA) ,a digital decoding circuit,and control logics on a single chip, It provides a - 1.6- 1.6V range of assembly voltage,Sbit potential resolution, and a current gain of 39.8dB with supply voltage of 1.8V. The offset and noise are smaller than 5.9nA and 25.3pArms,respectively. Experimental resuits from on-chip selective assembly of 30nm poly (ethylene glycol) (PEG) coated magnetic nano-particles (MNPs) targeted at biosensor applications are included and discussed to verify the feasibility of the proposed circuits.展开更多
文摘A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.
基金Science and Technology Key Project of Guangzhou(2007Z3-D3101)Production and Research Project of Zhuhai(PC20082002)Technology Innovation Project of Guangdong Province(2008778113)
文摘In this paper,based on the field-programmable gate array(FPGA)xc5vlx220 of Xilinx Company,the FPGA verification method for application specific integrated circuit(ASIC)design is introduced.Firstly,the basic principles of FPGA verification are introduced.Then,the structure of the FPGA board and the verification methods are illustrated.Finally,the workflow of FPGA verification for audio video coding standard(AVS)decoder and the method of restoring images are introduced in detail.The FPGA resources occupancy is shown and analyzed.The result shows that FPGA can verify the ASIC rapidly and effectively so as to shorten the development cycle.
基金National Natural Science Foundation of China (No. 61102042)Youth Innovation Foundation of Chinese Academy of SciencesShenzhen"Peacock Plan"to Z.Y.
文摘Most biological tissues are supple and elastic, while current electronic devices fabricated by semiconductors and metals are usually stiff and brittle. As a result, implanted electronic devices can irritate and damage surrounding tissues, causing immune reaction and scarring. In this work, we develop stretchable microelectrode arrays, with the development of a novel soft lithography technology, which are designed and fabricated with a polymer/stretchable metal/polymer sandwich structure. With the great deformability of stretch, compression, bend and twisting, while preserving electrical property, this technology overcomes the fundamental mismatch of mechanical properties between biological tissues and electronic devices, and provides highly-compliant, confonnal and stretchable bio-electronic interfaces. Here we also describe the following three applications of the stretchable electrode arrays: a. monitoring intracranial electroencephalography (EEG); b. stimulating peripheral nerves to drive muscles; c. monitoring epicardial electrocardiography (ECG). Stretchable microelectrode arrays create a promising field in biomedical applications for its better modulus match with biological tissues and robust mechanical and electrical properties. They allow for construction of electronic integrated circuits spread over on complex and dynamic curved surfaces, providing a much friendlier bio-electronic interface for diagnosis, treatment and in- telligent bio-control.
文摘ABC95 array computer is a multi-function network computer based on FPGA technology. A notable feature of ABC95 array computer is the support of complex interconnection, which determines that the computer must have enough I/O band and flexible communications between Pes. The authors designed the interconnecting network chips of ABC95 and realized a form of multi-function interconnection. The multi-function interconnecting network supports conflict-free access from processors to memory matrix and the MESH network of enhanced processors to processor communications. The design scheme has been proved feasible by experiment.
文摘A fully integrated CMOS bio-chip is designed in a SMIC 0.18μm CMOS mixed signal process and successfully integrated with a novel bio-nano-system. The proposed circuit integrates an array of 4 × 4 (16 pixels) of 19μm × 19μm electrodes,a counter electrode, a current mode preamplifier circuit (CMPA) ,a digital decoding circuit,and control logics on a single chip, It provides a - 1.6- 1.6V range of assembly voltage,Sbit potential resolution, and a current gain of 39.8dB with supply voltage of 1.8V. The offset and noise are smaller than 5.9nA and 25.3pArms,respectively. Experimental resuits from on-chip selective assembly of 30nm poly (ethylene glycol) (PEG) coated magnetic nano-particles (MNPs) targeted at biosensor applications are included and discussed to verify the feasibility of the proposed circuits.