A new method of constructing regular low-density parity-check (LDPC) codes was proposed. And the novel class of LDPC codes was applied in a coded orthogonal frequency division multiplexing (OFDM) system. This method e...A new method of constructing regular low-density parity-check (LDPC) codes was proposed. And the novel class of LDPC codes was applied in a coded orthogonal frequency division multiplexing (OFDM) system. This method extended the class of LDPC codes which could be constructed from shifted identity matrices. The method could avoid short cycles in Tanner graphs with simple inequation in the construction of shifting identity matrices, which made the girth of Tanner graphs 8. Because of the quasicyclic structure and the inherent block configuration of parity-check matrices, the encoders and the decoders were practically feasible. They were linear-time encodable and decodable. The LDPC codes proposed had various code rates, ranging from low to high. They performed excellently with iterative decoding and demonstrate better performance than other regular LDPC codes in OFDM systems.展开更多
In order to improve the performance of estimating the fundamental matrix, a key problem arising in stereo vision, a novel method based on stripe constraints is presented. In contrast to traditional methods based on al...In order to improve the performance of estimating the fundamental matrix, a key problem arising in stereo vision, a novel method based on stripe constraints is presented. In contrast to traditional methods based on algebraic least-square algorithms, the proposed approach aims to minimize a cost function that is derived from the minimum radius of the Hough transform. In a structured-light system with a particular stripe code pattern, there are linear constraints that the points with the same code are on the same surface. Using the Hough transform, the pixels with the same code map to the Hough space, and the radius of the intersections can be defined as the evaluation function in the optimization progress. The global optimum solution of the fundamental matrix can be estimated using a Levenberg- Marquardt optimization iterative process based on the Hough transform radius. Results illustrate the validity of this algorithm, and prove that this method can obtain good performance with high efficiency.展开更多
In order to optionally regulate embedding capacity and embedding transparency according to user's requirements in voice-over-IP(VoIP) steganography,a dynamic matrix encoding strategy(DMES) was presented.Differing ...In order to optionally regulate embedding capacity and embedding transparency according to user's requirements in voice-over-IP(VoIP) steganography,a dynamic matrix encoding strategy(DMES) was presented.Differing from the traditional matrix encoding strategy,DMES dynamically chose the size of each message group in a given set of adoptable message sizes.The appearance possibilities of all adoptable sizes were set in accordance with the desired embedding performance(embedding rate or bit-change rate).Accordingly,a searching algorithm that could provide an optimal combination of appearance possibilities was proposed.Furthermore,the roulette wheel algorithm was employed to determine the size of each message group according to the optimal combination of appearance possibilities.The effectiveness of DMES was evaluated in StegVoIP,which is a typical covert communication system based on VoIP.The experimental results demonstrate that DMES can adjust embedding capacity and embedding transparency effectively and flexibly,and achieve the desired embedding performance in any case.For the desired embedding rate,the average errors are not more than 0.000 8,and the standard deviations are not more than 0.002 0;for the desired bit-change rate,the average errors are not more than 0.001 4,and the standard deviations are not more than 0.002 6.展开更多
A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similar...A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.展开更多
A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the enco...A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.展开更多
Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the ...Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the known channel state information, pre-coding matrix is designed to pre-process the in-phase and quadrature signals of quadrature spatial modulation(QSM) to reduce the inter-channel interference. In order to lower the complexity at the receiver brought by the orthogonality of the PQSM system, an orthogonal matching pursuit(OMP) detection algorithm and a reconstructed model are proposed. The analysis and simulation results show that the proposed algorithm can obtain a similar bit error rate(BER) performance as the maximum likelihood(ML) detection algorithm with more than 80% reduction of complexity.展开更多
An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the a...An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the algorithm utilizes the similarities between the encoding matrix of network coding and the measurement matrix of compressed sensing. The source node firstly encodes the data, then compresses the coding data by cot-npressed sensing over finite fields. Compared with the network coding scheme, simulation results show that CS-NCES reduces the energy consumption about 25.30/0-34.50/0 and improves the efficiency of data reconstruction about 1.56%- 5.98%. The proposed algorithm can not only enhance the usability of network coding in wireless sensor networks, but also improve the network performance.展开更多
In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDP...In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.展开更多
This paper presents a matrix permuting approach to the construction of Low-Density Parity-Check (LDPC) code. It investigates the structure of the sparse parity-check matrix defined by Gallager. It is discovered that t...This paper presents a matrix permuting approach to the construction of Low-Density Parity-Check (LDPC) code. It investigates the structure of the sparse parity-check matrix defined by Gallager. It is discovered that the problem of constructing the sparse parity-check matrix requires an algorithm that is efficient in search environments and also is able to work with constraint satisfaction problem. The definition of Q-matrix is given, and it is found that the queen algorithm enables to search the Q-matrix. With properly permuting Q-matrix as sub-matrix, the sparse parity-check matrix which satisfied constraint condition is created, and the good regular-LDPC code that is called the Q-matrix LDPC code is generated. The result of this paper is significant not only for designing low complexity encoder, improving performance and reducing complexity of iterative decoding arithmetic, but also for building practical system of encodable and decodable LDPC code.展开更多
Objective: To identify differentially expressed long non-coding RNAs (lncRNAs) involved in the metastasis of epithelial ovarian cancer. Methods: An in vitro invasion assay was performed to validate the invasive ca...Objective: To identify differentially expressed long non-coding RNAs (lncRNAs) involved in the metastasis of epithelial ovarian cancer. Methods: An in vitro invasion assay was performed to validate the invasive capability of SKOV3 and SKOV3.ip1 cell lines. Total R.NA was then extracted, and microarray analysis was performed. Moreover, nine lncRNAs were selected for validation using RT-qPCR. Results: Compared with the SKOV3 cells, the SKOV3.ip1 cells significantly improved in the in vitro invasive activity. Of the 4,956 lncRNAs detected in the microarra~ 583 and 578 lncRNAs were upregulated and downregulated, respectivel~ in SKOV3.ip1 cells, compared with the parental SKOV3 cells. Seven of the analyzed lncRNAs (MALAT1, H19, UCA1, CCAT1, LOC645249, LOC100128881, and LOC100292680) confirmed the deregulation found by microarray analysis. Conclusion: LncRNAs clusters were differentially expressed in ovarian cancer cells with varying metastatic potentials. This result indicates that some lncRNAs might exert a partial or key role in epithelial ovarian cancer metastasis. Further studies should be conducted to determine the roles of these lncRNAs in ovarian cancer metastasis.展开更多
Several antennas based on cylindrical array and uniform hexagonal array are designed and fabricated on flexible substrate-Teflon.To validate the designed prototypes,the antennas are fabricated and their performance is...Several antennas based on cylindrical array and uniform hexagonal array are designed and fabricated on flexible substrate-Teflon.To validate the designed prototypes,the antennas are fabricated and their performance is analyzed.The highlight scheme is to improve the signal performance and electromagnetic field distribution by appropriately changing the parameters of the antennas array,signal frequencies,and steering angles.The proposed antennas array is capable of applying shaping radiation band technique to generate tunable power and radiation domain.The distribution of the field,and the bit-error-rate transmigration coefficient characteristics are measured.The results show that the proposed scheme can achieve better performance by searching the optimal parameters of antenna array.展开更多
A class of new PN sequence with prime number periods of 4t +1 form (t is an integer)is constructed.The advantage of these PN sequencs over the m(M) sequence is their large number of alternative periods.They hav...A class of new PN sequence with prime number periods of 4t +1 form (t is an integer)is constructed.The advantage of these PN sequencs over the m(M) sequence is their large number of alternative periods.They have good pseudo random characteristics demonstrated by the expression of periodic autocorrelation function found out in this paper.展开更多
Secret sharing is an important topic in cryptography and has applications in information security. The coding theory has been an important role in the constructing of secret sharing schemes. It is known that every lin...Secret sharing is an important topic in cryptography and has applications in information security. The coding theory has been an important role in the constructing of secret sharing schemes. It is known that every linear code can be used to construct secret sharing schemes. So, we use the parity-check matrix of a linear code to construct secret sharing schemes based on linear codes. We also describe some techniques to recover the secret and determine the access structure of the new scheme. In this paper, we use the Massey's secret sharing scheme.展开更多
Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded...Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. This algorithm, called totally coded method (TCM), consists of representing the symbolic determinant of a circuit matrix by code series and performing symbolic analysis by code manipulation. We describe an efficient code-ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, TCM not only covers all advantages of the algorithm via determinant decision diagrams (DDD) but is more simple and efficient than DDD method.展开更多
A low density parity check(LDPC)encoder with the codes of(8176,7154)and encoding rate of 7/8 under CCSDS standard for near space communication is designed.Based on LDPC encoding theory,the FPGA-based coding algorithm ...A low density parity check(LDPC)encoder with the codes of(8176,7154)and encoding rate of 7/8 under CCSDS standard for near space communication is designed.Based on LDPC encoding theory,the FPGA-based coding algorithm is designed.Based on the characteristics of LDPC generating matrix,the cyclic shift register is introduced as the core of the encoding circuit,and the shift-register-Adder-Accumulator(SRAA)structure is adopted to realize the fast calculation of matrix multiplication,so as to construct the encoding module with partial parallel encoding circuit as the core.In addition,the serial port input and output module,RAM storage module and control module are also designed,which together constitute the encoder system.The design scheme is implemented by FPGA hardware and verified by simulation and experiment.The results show that the test results of the designed LDPC encoder are consistent with the theoretical results.Therefore,the coding system is practical,and the design method is simple and efficient.展开更多
Wireless sensor-actuator networks can bring flexibility to smart home.We design and develop a smart home prototype using wireless sensor-actuator network technology to realize environmental sensing and the control of ...Wireless sensor-actuator networks can bring flexibility to smart home.We design and develop a smart home prototype using wireless sensor-actuator network technology to realize environmental sensing and the control of electric appliances.The basic motivation of our solution is to utilize the collaboration among a mass of low-cost sensor nodes and actuator nodes to make life convenient.To achieve it,we design a novel system architecture with assembled component modules.In particular,we address some key technical challenges:1) Field-Programmable Gate Array (FPGA) Implementation of Adaptive Differential Pulse Code Modulation (ADPCM) for audio data;2) FPGA Implementation of Lempel Ziv Storer Szymanski (LZSS) for bulk data;3) combination of complex control logic.Finally,a set of experiments are presented to evaluate the performance of our solution.展开更多
文摘A new method of constructing regular low-density parity-check (LDPC) codes was proposed. And the novel class of LDPC codes was applied in a coded orthogonal frequency division multiplexing (OFDM) system. This method extended the class of LDPC codes which could be constructed from shifted identity matrices. The method could avoid short cycles in Tanner graphs with simple inequation in the construction of shifting identity matrices, which made the girth of Tanner graphs 8. Because of the quasicyclic structure and the inherent block configuration of parity-check matrices, the encoders and the decoders were practically feasible. They were linear-time encodable and decodable. The LDPC codes proposed had various code rates, ranging from low to high. They performed excellently with iterative decoding and demonstrate better performance than other regular LDPC codes in OFDM systems.
文摘In order to improve the performance of estimating the fundamental matrix, a key problem arising in stereo vision, a novel method based on stripe constraints is presented. In contrast to traditional methods based on algebraic least-square algorithms, the proposed approach aims to minimize a cost function that is derived from the minimum radius of the Hough transform. In a structured-light system with a particular stripe code pattern, there are linear constraints that the points with the same code are on the same surface. Using the Hough transform, the pixels with the same code map to the Hough space, and the radius of the intersections can be defined as the evaluation function in the optimization progress. The global optimum solution of the fundamental matrix can be estimated using a Levenberg- Marquardt optimization iterative process based on the Hough transform radius. Results illustrate the validity of this algorithm, and prove that this method can obtain good performance with high efficiency.
基金Project(2009AA01A402) supported by the National High-Tech Research and Development Program of ChinaProject(NCET-06-0650) supported by Program for New Century Excellent Talents in University Project(IRT-0725) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘In order to optionally regulate embedding capacity and embedding transparency according to user's requirements in voice-over-IP(VoIP) steganography,a dynamic matrix encoding strategy(DMES) was presented.Differing from the traditional matrix encoding strategy,DMES dynamically chose the size of each message group in a given set of adoptable message sizes.The appearance possibilities of all adoptable sizes were set in accordance with the desired embedding performance(embedding rate or bit-change rate).Accordingly,a searching algorithm that could provide an optimal combination of appearance possibilities was proposed.Furthermore,the roulette wheel algorithm was employed to determine the size of each message group according to the optimal combination of appearance possibilities.The effectiveness of DMES was evaluated in StegVoIP,which is a typical covert communication system based on VoIP.The experimental results demonstrate that DMES can adjust embedding capacity and embedding transparency effectively and flexibly,and achieve the desired embedding performance in any case.For the desired embedding rate,the average errors are not more than 0.000 8,and the standard deviations are not more than 0.002 0;for the desired bit-change rate,the average errors are not more than 0.001 4,and the standard deviations are not more than 0.002 6.
文摘A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.
文摘A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.
基金partially supported by the National Natural Science Foundation of China (Grant No. 61701063)Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1600435)
文摘Pre-coding aided quadrature spatial modulation(PQSM) is a promising multiple input multiple output(MIMO) transmission technology. The multiuser(MU) detection in PQSM system is investigated in this paper. Based on the known channel state information, pre-coding matrix is designed to pre-process the in-phase and quadrature signals of quadrature spatial modulation(QSM) to reduce the inter-channel interference. In order to lower the complexity at the receiver brought by the orthogonality of the PQSM system, an orthogonal matching pursuit(OMP) detection algorithm and a reconstructed model are proposed. The analysis and simulation results show that the proposed algorithm can obtain a similar bit error rate(BER) performance as the maximum likelihood(ML) detection algorithm with more than 80% reduction of complexity.
文摘An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the algorithm utilizes the similarities between the encoding matrix of network coding and the measurement matrix of compressed sensing. The source node firstly encodes the data, then compresses the coding data by cot-npressed sensing over finite fields. Compared with the network coding scheme, simulation results show that CS-NCES reduces the energy consumption about 25.30/0-34.50/0 and improves the efficiency of data reconstruction about 1.56%- 5.98%. The proposed algorithm can not only enhance the usability of network coding in wireless sensor networks, but also improve the network performance.
基金supported in part by National Natural Science Foundation of China under Grants 61372074,91438101,61103143,U1504601,and U1404622Key Scientific and Technological Project of Henan under Grants 162102310589 and 172102310124
文摘In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.
基金Supported by the National Natural Science Foundation of China (No.60572050)by the National Science Foundation of Hubei Province (No.2004ABA049)
文摘This paper presents a matrix permuting approach to the construction of Low-Density Parity-Check (LDPC) code. It investigates the structure of the sparse parity-check matrix defined by Gallager. It is discovered that the problem of constructing the sparse parity-check matrix requires an algorithm that is efficient in search environments and also is able to work with constraint satisfaction problem. The definition of Q-matrix is given, and it is found that the queen algorithm enables to search the Q-matrix. With properly permuting Q-matrix as sub-matrix, the sparse parity-check matrix which satisfied constraint condition is created, and the good regular-LDPC code that is called the Q-matrix LDPC code is generated. The result of this paper is significant not only for designing low complexity encoder, improving performance and reducing complexity of iterative decoding arithmetic, but also for building practical system of encodable and decodable LDPC code.
文摘Objective: To identify differentially expressed long non-coding RNAs (lncRNAs) involved in the metastasis of epithelial ovarian cancer. Methods: An in vitro invasion assay was performed to validate the invasive capability of SKOV3 and SKOV3.ip1 cell lines. Total R.NA was then extracted, and microarray analysis was performed. Moreover, nine lncRNAs were selected for validation using RT-qPCR. Results: Compared with the SKOV3 cells, the SKOV3.ip1 cells significantly improved in the in vitro invasive activity. Of the 4,956 lncRNAs detected in the microarra~ 583 and 578 lncRNAs were upregulated and downregulated, respectivel~ in SKOV3.ip1 cells, compared with the parental SKOV3 cells. Seven of the analyzed lncRNAs (MALAT1, H19, UCA1, CCAT1, LOC645249, LOC100128881, and LOC100292680) confirmed the deregulation found by microarray analysis. Conclusion: LncRNAs clusters were differentially expressed in ovarian cancer cells with varying metastatic potentials. This result indicates that some lncRNAs might exert a partial or key role in epithelial ovarian cancer metastasis. Further studies should be conducted to determine the roles of these lncRNAs in ovarian cancer metastasis.
基金Projects(61803390,61501525)supported by the National Natural Science Foundation of ChinaProject(61927803)supported by Major Scientific Instrument Development Project of National Natural Science Foundation of China。
文摘Several antennas based on cylindrical array and uniform hexagonal array are designed and fabricated on flexible substrate-Teflon.To validate the designed prototypes,the antennas are fabricated and their performance is analyzed.The highlight scheme is to improve the signal performance and electromagnetic field distribution by appropriately changing the parameters of the antennas array,signal frequencies,and steering angles.The proposed antennas array is capable of applying shaping radiation band technique to generate tunable power and radiation domain.The distribution of the field,and the bit-error-rate transmigration coefficient characteristics are measured.The results show that the proposed scheme can achieve better performance by searching the optimal parameters of antenna array.
文摘A class of new PN sequence with prime number periods of 4t +1 form (t is an integer)is constructed.The advantage of these PN sequencs over the m(M) sequence is their large number of alternative periods.They have good pseudo random characteristics demonstrated by the expression of periodic autocorrelation function found out in this paper.
文摘Secret sharing is an important topic in cryptography and has applications in information security. The coding theory has been an important role in the constructing of secret sharing schemes. It is known that every linear code can be used to construct secret sharing schemes. So, we use the parity-check matrix of a linear code to construct secret sharing schemes based on linear codes. We also describe some techniques to recover the secret and determine the access structure of the new scheme. In this paper, we use the Massey's secret sharing scheme.
文摘Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. This algorithm, called totally coded method (TCM), consists of representing the symbolic determinant of a circuit matrix by code series and performing symbolic analysis by code manipulation. We describe an efficient code-ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, TCM not only covers all advantages of the algorithm via determinant decision diagrams (DDD) but is more simple and efficient than DDD method.
文摘A low density parity check(LDPC)encoder with the codes of(8176,7154)and encoding rate of 7/8 under CCSDS standard for near space communication is designed.Based on LDPC encoding theory,the FPGA-based coding algorithm is designed.Based on the characteristics of LDPC generating matrix,the cyclic shift register is introduced as the core of the encoding circuit,and the shift-register-Adder-Accumulator(SRAA)structure is adopted to realize the fast calculation of matrix multiplication,so as to construct the encoding module with partial parallel encoding circuit as the core.In addition,the serial port input and output module,RAM storage module and control module are also designed,which together constitute the encoder system.The design scheme is implemented by FPGA hardware and verified by simulation and experiment.The results show that the test results of the designed LDPC encoder are consistent with the theoretical results.Therefore,the coding system is practical,and the design method is simple and efficient.
基金supported by the Natural Science Foundation of China under Grant No.61070206,No.61070205and No.60833009the National973Project of China under Grant No.2011CB302701+2 种基金the program of New Century Excellent Talents in University of China under Grant No.NCET-080737the Beijing National Natural Science Foundation under Grant No.4092030the Cosponsored Project of Beijing Committee of Education
文摘Wireless sensor-actuator networks can bring flexibility to smart home.We design and develop a smart home prototype using wireless sensor-actuator network technology to realize environmental sensing and the control of electric appliances.The basic motivation of our solution is to utilize the collaboration among a mass of low-cost sensor nodes and actuator nodes to make life convenient.To achieve it,we design a novel system architecture with assembled component modules.In particular,we address some key technical challenges:1) Field-Programmable Gate Array (FPGA) Implementation of Adaptive Differential Pulse Code Modulation (ADPCM) for audio data;2) FPGA Implementation of Lempel Ziv Storer Szymanski (LZSS) for bulk data;3) combination of complex control logic.Finally,a set of experiments are presented to evaluate the performance of our solution.