针对现有模块化多电平换流器(modular multi-level converter,MMC)可靠性计算中未充分考虑冗余系统故障率时变性和缺乏考虑更新过程,从而不能科学衡量MMC可靠性的问题,提出了一种考虑MMC冗余系统故障率时变性并引入N阶梯更新过程的MMC...针对现有模块化多电平换流器(modular multi-level converter,MMC)可靠性计算中未充分考虑冗余系统故障率时变性和缺乏考虑更新过程,从而不能科学衡量MMC可靠性的问题,提出了一种考虑MMC冗余系统故障率时变性并引入N阶梯更新过程的MMC可靠性建模方法。首先,从冗余程度、冗余方式角度细化MMC冗余系统的分类,建立可靠度与故障率间的数学解析关系来量化表征冗余系统故障率时变的变化特性,分析传统马尔科夫模型所计算的冗余系统故障率过小而导致可靠性计算结果偏高的不合理问题;其次,利用N阶梯故障率取代传统MMC冗余系统的时变故障率,并同时引入更新过程理论推导MMC的平均无故障工作时间(mean time to failure,MTTF)和稳态可用度公式,以此修正传统MMC可靠性参数计算结果偏高的问题。最后,以半桥子模块的MMC为例,验证了所提方法的有效性和可行性。展开更多
文摘针对现有模块化多电平换流器(modular multi-level converter,MMC)可靠性计算中未充分考虑冗余系统故障率时变性和缺乏考虑更新过程,从而不能科学衡量MMC可靠性的问题,提出了一种考虑MMC冗余系统故障率时变性并引入N阶梯更新过程的MMC可靠性建模方法。首先,从冗余程度、冗余方式角度细化MMC冗余系统的分类,建立可靠度与故障率间的数学解析关系来量化表征冗余系统故障率时变的变化特性,分析传统马尔科夫模型所计算的冗余系统故障率过小而导致可靠性计算结果偏高的不合理问题;其次,利用N阶梯故障率取代传统MMC冗余系统的时变故障率,并同时引入更新过程理论推导MMC的平均无故障工作时间(mean time to failure,MTTF)和稳态可用度公式,以此修正传统MMC可靠性参数计算结果偏高的问题。最后,以半桥子模块的MMC为例,验证了所提方法的有效性和可行性。