This paper deals with the problem of stabilization design for a class of continuous-time Takagi-Sugeno(T-S)fuzzy systems.New stabilization conditions are derived based on a relaxed approach in which both fuzzy Lyapu...This paper deals with the problem of stabilization design for a class of continuous-time Takagi-Sugeno(T-S)fuzzy systems.New stabilization conditions are derived based on a relaxed approach in which both fuzzy Lyapunov functions and staircase membership functions are used.Through the staircase membership functions approximating the continuous membership functions of the given fuzzy model,the information of the membership functions can be brought into the stabilization design of the fuzzy systems,thereby significantly reducing the conservativeness in the existing stabilization conditions of the T-S fuzzy systems.Unlike some previous fuzzy Lyapunov function approaches reported in the literature,the proposed stabilization conditions do not depend on the time-derivative of the membership functions that may be the main source of conservatism when considering fuzzy Lyapunov functions analysis.Moreover,conditions for the solvability of the controller design are written in the form of linear matrix inequalities,but not bilinear matrix inequalities,which are easier to be solved by convex optimization techniques.A simulation example is given to demonstrate the validity of the proposed approach.展开更多
基金The National Natural Science Foundation of China(No.60764001,60835001,60875035,61004032)the Postdoctoral Research Fund of Southeast Universitythe Natural Science Foundation of Jiangsu Province(No.BK2008294)
文摘This paper deals with the problem of stabilization design for a class of continuous-time Takagi-Sugeno(T-S)fuzzy systems.New stabilization conditions are derived based on a relaxed approach in which both fuzzy Lyapunov functions and staircase membership functions are used.Through the staircase membership functions approximating the continuous membership functions of the given fuzzy model,the information of the membership functions can be brought into the stabilization design of the fuzzy systems,thereby significantly reducing the conservativeness in the existing stabilization conditions of the T-S fuzzy systems.Unlike some previous fuzzy Lyapunov function approaches reported in the literature,the proposed stabilization conditions do not depend on the time-derivative of the membership functions that may be the main source of conservatism when considering fuzzy Lyapunov functions analysis.Moreover,conditions for the solvability of the controller design are written in the form of linear matrix inequalities,but not bilinear matrix inequalities,which are easier to be solved by convex optimization techniques.A simulation example is given to demonstrate the validity of the proposed approach.