为充分提取文本和语音双模态深层情感特征,解决模态间有效交互融合的问题,提高情感识别准确率,提出了基于级联双通道分阶段融合(cascade two channel and phased fusion,CTC-PF)的双模态情感识别模型。设计级联顺序注意力编码器(cascade...为充分提取文本和语音双模态深层情感特征,解决模态间有效交互融合的问题,提高情感识别准确率,提出了基于级联双通道分阶段融合(cascade two channel and phased fusion,CTC-PF)的双模态情感识别模型。设计级联顺序注意力编码器(cascaded sequential attention-Encoder,CSA-Encoder)对长距离语音情感序列信息进行并行化计算,提取深层语音情感特征;提出情感领域级联编码器(affective field cascade-Encoder,AFC-Encoder),提高模型的全局和局部文本理解能力,解决文本关键情感特征稀疏的问题。两个级联通道完成语音和文本信息的特征提取之后,利用协同注意力机制对两者的重要情感特征进行交互融合,降低对齐操作成本,然后采用哈达玛点积对其进行二次融合,捕获差异性特征,分阶段融合实现不同时间步长模态序列间的信息交互,解决双模态情感信息交互不足的问题。模型在IEMOCAP数据集上进行分类实验,结果表明,情感识别准确率可达79.4%,F1值可达79.0%,相比现有主流方法有明显提升,证明了该模型在语音和文本融合情感识别上的优越性。展开更多
护生临床实践是培养护生综合素质的重要环节,优质的带教方法对护生掌握专科知识、操作技能至关重要。如何改善护理带教方法,是护理带教人员探讨的新课题。本文将结合国内外文献探讨,分阶段融合教学法——根据护生所处的不同临床实践阶段...护生临床实践是培养护生综合素质的重要环节,优质的带教方法对护生掌握专科知识、操作技能至关重要。如何改善护理带教方法,是护理带教人员探讨的新课题。本文将结合国内外文献探讨,分阶段融合教学法——根据护生所处的不同临床实践阶段,分别在护生临床实践前期采用目标管理教学法MBO(Management by Objectives)、中期采用案例教学法CBL(Case Study Based Learning)、后期采用Seminar(研讨式)教学法三者结合的带教方式,为护理教育的创新应用提供参考。展开更多
目的近年来,深度卷积神经网络成为单帧图像超分辨率重建任务中的研究热点。针对多数网络结构均是采用链式堆叠方式使得网络层间联系弱以及分层特征不能充分利用等问题,提出了多阶段融合网络的图像超分辨重建方法,进一步提高重建质量。...目的近年来,深度卷积神经网络成为单帧图像超分辨率重建任务中的研究热点。针对多数网络结构均是采用链式堆叠方式使得网络层间联系弱以及分层特征不能充分利用等问题,提出了多阶段融合网络的图像超分辨重建方法,进一步提高重建质量。方法首先利用特征提取网络得到图像的低频特征,并将其作为两个子网络的输入,其一通过编码网络得到低分辨率图像的结构特征信息,其二通过阶段特征融合单元组成的多路径前馈网络得到高频特征,其中融合单元将网络连续几层的特征进行融合处理并以自适应的方式获得有效特征。然后利用多路径连接的方式连接不同的特征融合单元以增强融合单元之间的联系,提取更多的有效特征,同时提高分层特征的利用率。最后将两个子网络得到的特征进行融合后,利用残差学习完成高分辨图像的重建。结果在4个基准测试集Set5、Set14、B100和Urban100上进行实验,其中放大规模为4时,峰值信噪比分别为31. 69 d B、28. 24 d B、27. 39 d B和25. 46 d B,相比其他方法的结果具有一定提升。结论本文提出的网络克服了链式结构的弊端,通过充分利用分层特征提取更多的高频信息,同时利用低分辨率图像本身携带的结构特征信息共同完成重建,并取得了较好的重建效果。展开更多
文摘为充分提取文本和语音双模态深层情感特征,解决模态间有效交互融合的问题,提高情感识别准确率,提出了基于级联双通道分阶段融合(cascade two channel and phased fusion,CTC-PF)的双模态情感识别模型。设计级联顺序注意力编码器(cascaded sequential attention-Encoder,CSA-Encoder)对长距离语音情感序列信息进行并行化计算,提取深层语音情感特征;提出情感领域级联编码器(affective field cascade-Encoder,AFC-Encoder),提高模型的全局和局部文本理解能力,解决文本关键情感特征稀疏的问题。两个级联通道完成语音和文本信息的特征提取之后,利用协同注意力机制对两者的重要情感特征进行交互融合,降低对齐操作成本,然后采用哈达玛点积对其进行二次融合,捕获差异性特征,分阶段融合实现不同时间步长模态序列间的信息交互,解决双模态情感信息交互不足的问题。模型在IEMOCAP数据集上进行分类实验,结果表明,情感识别准确率可达79.4%,F1值可达79.0%,相比现有主流方法有明显提升,证明了该模型在语音和文本融合情感识别上的优越性。
文摘护生临床实践是培养护生综合素质的重要环节,优质的带教方法对护生掌握专科知识、操作技能至关重要。如何改善护理带教方法,是护理带教人员探讨的新课题。本文将结合国内外文献探讨,分阶段融合教学法——根据护生所处的不同临床实践阶段,分别在护生临床实践前期采用目标管理教学法MBO(Management by Objectives)、中期采用案例教学法CBL(Case Study Based Learning)、后期采用Seminar(研讨式)教学法三者结合的带教方式,为护理教育的创新应用提供参考。
文摘目的近年来,深度卷积神经网络成为单帧图像超分辨率重建任务中的研究热点。针对多数网络结构均是采用链式堆叠方式使得网络层间联系弱以及分层特征不能充分利用等问题,提出了多阶段融合网络的图像超分辨重建方法,进一步提高重建质量。方法首先利用特征提取网络得到图像的低频特征,并将其作为两个子网络的输入,其一通过编码网络得到低分辨率图像的结构特征信息,其二通过阶段特征融合单元组成的多路径前馈网络得到高频特征,其中融合单元将网络连续几层的特征进行融合处理并以自适应的方式获得有效特征。然后利用多路径连接的方式连接不同的特征融合单元以增强融合单元之间的联系,提取更多的有效特征,同时提高分层特征的利用率。最后将两个子网络得到的特征进行融合后,利用残差学习完成高分辨图像的重建。结果在4个基准测试集Set5、Set14、B100和Urban100上进行实验,其中放大规模为4时,峰值信噪比分别为31. 69 d B、28. 24 d B、27. 39 d B和25. 46 d B,相比其他方法的结果具有一定提升。结论本文提出的网络克服了链式结构的弊端,通过充分利用分层特征提取更多的高频信息,同时利用低分辨率图像本身携带的结构特征信息共同完成重建,并取得了较好的重建效果。
文摘遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的挑战.针对现有方法应用于目标尺度小、横纵比例不均衡的遥感图像时存在的精度下降问题,提出一种基于多阶段特征融合的目标检测方法MF2M(Multi-stage Feature Fusion Method).该方法在一阶段对特征图通道进行组合拆分,再采用卷积拼接的融合方式聚合通道维度的特征,从而强化输出的目标空间轮廓信息;二阶段设计多比例的非对称卷积块,增强大横纵比目标的高维全局特征,改善目标与检测框匹配粗糙的问题,同时利用串并行相结合的处理方式减少冗余卷积参数,加速网络收敛.在DOTA(Dataset for Object deTection in Aerial images)数据集上的实验结果表明,基准方法引入MF2M后,在保证检测速度的前提下精度指标mAP提高至76.44%,结果验证了所提算法的有效性与可靠性.