The composites of poly[Ni(salen)] and multi-walled carbon nanotube (MWCNT) were synthesized by pulse potentiostatic method. The composites were characterized by field emission scanning electron microscopy, Fourier...The composites of poly[Ni(salen)] and multi-walled carbon nanotube (MWCNT) were synthesized by pulse potentiostatic method. The composites were characterized by field emission scanning electron microscopy, Fourier transform infrared spectra, and electrochemical impedance spectroscopy. The wrapping of carbon nanotubes with poly[Ni(salen)] varied significantly with anodic pulse duration. Variance of structure of poly[Ni(salen)] caused by anodic pulse duration affected the ability of absorption to solvent molecules or solvated ions, which was indicated by v (C≡N) intensity. The ability to store/release charge of poly[Ni(salen)] caused by redox switching was evaluated in the form of low-frequency capacitance. Correlations of chargetransfer resistance/ionic diffusion resistance with potential and anodic pulse duration were investigated.展开更多
基金supports of this work by Beijing Natural Science Foundation(2093039)Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-09-0215)State Key Laboratory of Multiphase Complex Systems (MPCS-2011-D-08)
文摘The composites of poly[Ni(salen)] and multi-walled carbon nanotube (MWCNT) were synthesized by pulse potentiostatic method. The composites were characterized by field emission scanning electron microscopy, Fourier transform infrared spectra, and electrochemical impedance spectroscopy. The wrapping of carbon nanotubes with poly[Ni(salen)] varied significantly with anodic pulse duration. Variance of structure of poly[Ni(salen)] caused by anodic pulse duration affected the ability of absorption to solvent molecules or solvated ions, which was indicated by v (C≡N) intensity. The ability to store/release charge of poly[Ni(salen)] caused by redox switching was evaluated in the form of low-frequency capacitance. Correlations of chargetransfer resistance/ionic diffusion resistance with potential and anodic pulse duration were investigated.