To broaden the frequency width and increase the damping coefficient of a dynamic pressure damper, we designed an aggregative dynamic pressure damper (ADPD). Combined with the advantages of traditional dynamic pressure...To broaden the frequency width and increase the damping coefficient of a dynamic pressure damper, we designed an aggregative dynamic pressure damper (ADPD). Combined with the advantages of traditional dynamic pressure dampers (TDPD), ADPD can not only increase the damping coefficient in wide frequency range for valve control system, but also absorb partial pressure pulsations and impacts in the low and high frequency fields. Based on the theoretical research and the analysis compared with TDPD, we concluded that the ADPD was superior to the TDPD in the middle high frequency field, and the main parameters influencing the performance of the damper were the damping stiffness, orifice flow coefficient, pre-charge pressure, and the volume of the damper accumulator.展开更多
文摘To broaden the frequency width and increase the damping coefficient of a dynamic pressure damper, we designed an aggregative dynamic pressure damper (ADPD). Combined with the advantages of traditional dynamic pressure dampers (TDPD), ADPD can not only increase the damping coefficient in wide frequency range for valve control system, but also absorb partial pressure pulsations and impacts in the low and high frequency fields. Based on the theoretical research and the analysis compared with TDPD, we concluded that the ADPD was superior to the TDPD in the middle high frequency field, and the main parameters influencing the performance of the damper were the damping stiffness, orifice flow coefficient, pre-charge pressure, and the volume of the damper accumulator.