通常基于本地反馈信息的电力系统稳定器(Power System Stabilizer,PSS)不能很好地抑制系统区间低频振荡,广域测量系统(Wide Area Measurement System,WAMS)的应用为抑制系统区间低频振荡提供了强有力的工具。提出一种考虑时延影响的PSS...通常基于本地反馈信息的电力系统稳定器(Power System Stabilizer,PSS)不能很好地抑制系统区间低频振荡,广域测量系统(Wide Area Measurement System,WAMS)的应用为抑制系统区间低频振荡提供了强有力的工具。提出一种考虑时延影响的PSS,并利用增益调节模块和相位超前/滞后模块构成PSS时滞补偿环节,消除远方信号延迟的影响。以一个四机两区域系统为例,利用改进矩阵束的方法辨识不同延迟条件下对阻尼控制的影响和阻尼补偿效果。仿真结果表明该时滞补偿方法在一定延迟范围内的有效性,维持了PSS采用远方信号的阻尼效果,提高了系统稳定性。展开更多
As a consequence of interconnections of large power systems electromechanical oscillations appear being known as inter area oscillations. In order to suppress such inter area oscillations, a FACTS device is conceive...As a consequence of interconnections of large power systems electromechanical oscillations appear being known as inter area oscillations. In order to suppress such inter area oscillations, a FACTS device is conceived which is designed on the basis of the analogy between the transmission line model and a longitudinal electromechanical model. The damping action is based on the phenomenon of impedance matching of the transmission line model. Modelling of the overall system, optimal placement and control strategy are being treated. A realistic 420kV longitudinal model and a complex power system model are used for simulation. In the simulation, the time response of this device and the effect of this device even under limiting conditions are studied. The results show that this device suppresses the inter area oscillations effectively.展开更多
文摘通常基于本地反馈信息的电力系统稳定器(Power System Stabilizer,PSS)不能很好地抑制系统区间低频振荡,广域测量系统(Wide Area Measurement System,WAMS)的应用为抑制系统区间低频振荡提供了强有力的工具。提出一种考虑时延影响的PSS,并利用增益调节模块和相位超前/滞后模块构成PSS时滞补偿环节,消除远方信号延迟的影响。以一个四机两区域系统为例,利用改进矩阵束的方法辨识不同延迟条件下对阻尼控制的影响和阻尼补偿效果。仿真结果表明该时滞补偿方法在一定延迟范围内的有效性,维持了PSS采用远方信号的阻尼效果,提高了系统稳定性。
文摘As a consequence of interconnections of large power systems electromechanical oscillations appear being known as inter area oscillations. In order to suppress such inter area oscillations, a FACTS device is conceived which is designed on the basis of the analogy between the transmission line model and a longitudinal electromechanical model. The damping action is based on the phenomenon of impedance matching of the transmission line model. Modelling of the overall system, optimal placement and control strategy are being treated. A realistic 420kV longitudinal model and a complex power system model are used for simulation. In the simulation, the time response of this device and the effect of this device even under limiting conditions are studied. The results show that this device suppresses the inter area oscillations effectively.