In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope...In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.展开更多
A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam dement was obtained in light of the mass distribution characteristics of composite materials. The st...A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam dement was obtained in light of the mass distribution characteristics of composite materials. The stiffness matrix of the beam element was derived from the constitutive equations of each layer and the relationship between the strain distribution and the node displacement of the beam element. The specific damping capacity of the beam element was analyzed according to the strain distribution of the beam element and the strain energy dissipation caused by vibration in each direction of each layer; and the damping coefficients were obtained according to the principle that the total energy dissipation of the beam element was equal to the work done by the equivalent damping force during a cycle of vibration, from which the damping matrix of the dynamic equations was obtained. Using the finite element method, the dynamic analytic model of the mechanism was obtained. The dynamic responses and natural frequency of the mechanism were obtained by simulation, respectively, and those of the simulation obtained by the proposed model were analyzed and compared with the results obtained by the conventional model. The work provides theoretical basis to a certain extent for the further research on nonlinear vibration characteristics and optimum design of this kind of mechanism.展开更多
基金supported by the Foundation of National Key Laboratory on Ship Vibration and Noise(No. 614220400307)the National Natural Science Foundation of China(No.11872207)+1 种基金the Aeronautical Science Foundation of China(No. 20180952007)the Foundation of State Key Laboratory of Mechanics and Control of Mechanical Structures(No. MCMS-I-0520G01)
文摘In wind tunnel tests,long cantilever stings are usually used to support aerodynamic models.However,this kind of sting support system is prone to vibration problems due to its low damping,which limits the test envelope and affects the data quality.It is shown in many studies that the sting vibration can be effectively reduced by using active sting dampers based on piezoelectric actuators.This paper attempts to review the research progress of piezoelectric vibration control in wind tunnel tests,covering the design of active sting dampers,control methods and wind tunnel applications.First of all,different design schemes of active sting dampers are briefly introduced,along with the vibration damping principle.Then,a comprehensive review of the control methods for active sting dampers is presented,ranging from classic control methods,like PID control algorithm,to various intelligent control methods.Furthermore,the applications of active sting dampers and controllers in different wind tunnels are summarized to evaluate their vibration damping effect.Finally,the remaining problems that need to be solved in the future development of piezoelectric vibration control in wind tunnel tests are discussed.
基金Projects(50175031, 50565001) supported by the National Natural Science Foundation of China project (2003203) supported by the New Century Ten Hundred and Thousand Talent Project Special Foundation of Guangxi+1 种基金 project(0542005) supported by Guangxi Science Foundation project(205119) supported by the Key Project of Chinese Ministry of Education
文摘A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam dement was obtained in light of the mass distribution characteristics of composite materials. The stiffness matrix of the beam element was derived from the constitutive equations of each layer and the relationship between the strain distribution and the node displacement of the beam element. The specific damping capacity of the beam element was analyzed according to the strain distribution of the beam element and the strain energy dissipation caused by vibration in each direction of each layer; and the damping coefficients were obtained according to the principle that the total energy dissipation of the beam element was equal to the work done by the equivalent damping force during a cycle of vibration, from which the damping matrix of the dynamic equations was obtained. Using the finite element method, the dynamic analytic model of the mechanism was obtained. The dynamic responses and natural frequency of the mechanism were obtained by simulation, respectively, and those of the simulation obtained by the proposed model were analyzed and compared with the results obtained by the conventional model. The work provides theoretical basis to a certain extent for the further research on nonlinear vibration characteristics and optimum design of this kind of mechanism.