Since the roll damping of ships has significant effects of viscosity, it is difficult to calculate it theoretically. Therefore, experimental results or some prediction methods are used to get the roll damping in desig...Since the roll damping of ships has significant effects of viscosity, it is difficult to calculate it theoretically. Therefore, experimental results or some prediction methods are used to get the roll damping in design stage of ships. Among some prediction methods, Ikeda's one is widely used in many ship motion computer programs. Using the method, the roll damping of various ship hulls with various bilge keels can be calculated to investigate its characteristics. To calculate the roll damping of each ship, detailed data of the ship are needed to input. Therefore, a simpler prediction method is expected in primary design stage. Such a simple method must be useful to validate the results obtained by a computer code to predict it on the basis of Ikeda's method, too. On the basis of the predicted roll damping by Ikeda's method for various ships, a very simple prediction formula of the roll damping of ships is deduced in the present paper. Ship hull forms are systematically changed by changing length, beam, draft, mid-ship sectional coefficient and prismatic coefficient. It is found, however, that this simple formula can not be used for ships that have high position of the center of gravity. A modified method to improve accuracy for such ships is proposed.展开更多
Tuned liquid damper is one the passive structural control ways which has been used since mid 1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly wat...Tuned liquid damper is one the passive structural control ways which has been used since mid 1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behavior.展开更多
The jetting and cementing bucket platform (JCBP) is a new type offshore oil-drilling platform. This paper aims to establish an analysis method for calculating the dynamic response of this platform. Based on the theo...The jetting and cementing bucket platform (JCBP) is a new type offshore oil-drilling platform. This paper aims to establish an analysis method for calculating the dynamic response of this platform. Based on the theory of elastic half space, the dynamic stiffness and damping of the platform' s foundation were obtained and attached to the end of the platform' s main jackets as a boundary condition. Then using finite element method (FEM), the dynamic response of the platform due to wave and current loading was calculated. Furthermore, the whole platform' s finite element model was established and the dynamic response of the platform was calculated. The numerical results demonstrate that the present method by the usage of elastic half space theory and FEM is simple and it is reliable and efficient to calculate dynamic behavior of the platform in response to wave and current loading.展开更多
Electrostatic torsional micromirrors are widely applied in the fields·of micro-optical switches,optical attenuators,optical scanners,and optical displays.In previous lectures,most of the micromirrors were twisted...Electrostatic torsional micromirrors are widely applied in the fields·of micro-optical switches,optical attenuators,optical scanners,and optical displays.In previous lectures,most of the micromirrors were twisted along the urtiaxial or biaxial direction,which limited the range of light reflection.In this·paper,a quasicrystal torsional micromirror that can be deflected in any direction is designed and the dynamic model of the electrostatically driven micromirror is established.The static and dynamic phenomena and pull-in characteristics are analyzed through the numerical solution of the strain gradient theory.The results of three kinds of mirror deflection directions are compared and analyzed.The results show the significant differences in the torsion models with different deflection axis directions.When the deflection angle along the oblique axis reaches 45°,the instability voltage is the smallest.The pull-in instability voltage increases with the increment ofphonon-phason coupling elastic modulus and phason elastic modulus.The perrriittivity of quasicrystal,the strain gradient parameter,and the air damping influence the torsion of the micromirror dynaniic system.A larger pull-in instability voltage generates with the decrease of surface distributed forces.展开更多
The vibration of beams on foundations under moving loads has many applications in several fields, such as pavements in highways or rails in railways. However, most of the current studies only consider the energy dissi...The vibration of beams on foundations under moving loads has many applications in several fields, such as pavements in highways or rails in railways. However, most of the current studies only consider the energy dissipation mechanism of the foundation through viscous behavior; this assumption is unrealistic for soils. The shear rigidity and radius of gyration of the beam are also usually excluded. Therefore, this study investigates the vibration of an infinite Timoshenko beam resting on a hysteretically damped elastic foundation under a moving load with constant or harmonic amplitude. The governing differential equations of motion are formulated on the basis of the Hamilton principle and Timoshenko beam theory, and are then transformed into two algebraic equations through a double Fourier transform with respect to moving space and time. Beam deflection is obtained by inverse fast Fourier transform. The solution is verified through comparison with the closed-form solution of an Euler-Bernoulli beam on a Winkler foundation. Numerical examples are used to investigate:(a) the effect of the spatial distribution of the load, and(b) the effects of the beam properties on the deflected shape, maximum displacement, critical frequency, and critical velocity. These findings can serve as references for the performance and safety assessment of railway and highway structures.展开更多
文摘Since the roll damping of ships has significant effects of viscosity, it is difficult to calculate it theoretically. Therefore, experimental results or some prediction methods are used to get the roll damping in design stage of ships. Among some prediction methods, Ikeda's one is widely used in many ship motion computer programs. Using the method, the roll damping of various ship hulls with various bilge keels can be calculated to investigate its characteristics. To calculate the roll damping of each ship, detailed data of the ship are needed to input. Therefore, a simpler prediction method is expected in primary design stage. Such a simple method must be useful to validate the results obtained by a computer code to predict it on the basis of Ikeda's method, too. On the basis of the predicted roll damping by Ikeda's method for various ships, a very simple prediction formula of the roll damping of ships is deduced in the present paper. Ship hull forms are systematically changed by changing length, beam, draft, mid-ship sectional coefficient and prismatic coefficient. It is found, however, that this simple formula can not be used for ships that have high position of the center of gravity. A modified method to improve accuracy for such ships is proposed.
文摘Tuned liquid damper is one the passive structural control ways which has been used since mid 1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behavior.
文摘The jetting and cementing bucket platform (JCBP) is a new type offshore oil-drilling platform. This paper aims to establish an analysis method for calculating the dynamic response of this platform. Based on the theory of elastic half space, the dynamic stiffness and damping of the platform' s foundation were obtained and attached to the end of the platform' s main jackets as a boundary condition. Then using finite element method (FEM), the dynamic response of the platform due to wave and current loading was calculated. Furthermore, the whole platform' s finite element model was established and the dynamic response of the platform was calculated. The numerical results demonstrate that the present method by the usage of elastic half space theory and FEM is simple and it is reliable and efficient to calculate dynamic behavior of the platform in response to wave and current loading.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572191,51701117,and 51779139).
文摘Electrostatic torsional micromirrors are widely applied in the fields·of micro-optical switches,optical attenuators,optical scanners,and optical displays.In previous lectures,most of the micromirrors were twisted along the urtiaxial or biaxial direction,which limited the range of light reflection.In this·paper,a quasicrystal torsional micromirror that can be deflected in any direction is designed and the dynamic model of the electrostatically driven micromirror is established.The static and dynamic phenomena and pull-in characteristics are analyzed through the numerical solution of the strain gradient theory.The results of three kinds of mirror deflection directions are compared and analyzed.The results show the significant differences in the torsion models with different deflection axis directions.When the deflection angle along the oblique axis reaches 45°,the instability voltage is the smallest.The pull-in instability voltage increases with the increment ofphonon-phason coupling elastic modulus and phason elastic modulus.The perrriittivity of quasicrystal,the strain gradient parameter,and the air damping influence the torsion of the micromirror dynaniic system.A larger pull-in instability voltage generates with the decrease of surface distributed forces.
基金supported by The Hong Kong Polytechnic University(Project Nos.G-YN95 and G-YBC7)
文摘The vibration of beams on foundations under moving loads has many applications in several fields, such as pavements in highways or rails in railways. However, most of the current studies only consider the energy dissipation mechanism of the foundation through viscous behavior; this assumption is unrealistic for soils. The shear rigidity and radius of gyration of the beam are also usually excluded. Therefore, this study investigates the vibration of an infinite Timoshenko beam resting on a hysteretically damped elastic foundation under a moving load with constant or harmonic amplitude. The governing differential equations of motion are formulated on the basis of the Hamilton principle and Timoshenko beam theory, and are then transformed into two algebraic equations through a double Fourier transform with respect to moving space and time. Beam deflection is obtained by inverse fast Fourier transform. The solution is verified through comparison with the closed-form solution of an Euler-Bernoulli beam on a Winkler foundation. Numerical examples are used to investigate:(a) the effect of the spatial distribution of the load, and(b) the effects of the beam properties on the deflected shape, maximum displacement, critical frequency, and critical velocity. These findings can serve as references for the performance and safety assessment of railway and highway structures.