A novel simplified method is presented to design FIR filter with controllable center frequency. The properties of transfer curves for all-phase filters are illustrated under 3 windowing conditions. By combining single...A novel simplified method is presented to design FIR filter with controllable center frequency. The properties of transfer curves for all-phase filters are illustrated under 3 windowing conditions. By combining single-window all-phase filter design steps and double phase-shift combination, a series of design formulas for point-pass filter, notch filter, band-pass filter and band-stop filter are derived, thus the design computation complexity is greatly reduced. Experiments prove that the center frequency of all the filters can be accurately specified at arbitrary position by adjusting frequency parameters m and λ.展开更多
This paper presents a compact Ultra-Wideband (UWB) band-pass filter using a high-pass filter and a low-pass one, and the resonator with lumped elements. The structure of our proposed bandpass filter is very simple a...This paper presents a compact Ultra-Wideband (UWB) band-pass filter using a high-pass filter and a low-pass one, and the resonator with lumped elements. The structure of our proposed bandpass filter is very simple and the Defected Ground Structure(DGS) structure is used to get the low-pass filter characteristics. This proposed band-pass filter can be much smaller than a cascaded type filter. As a result of simulation, the insertion loss is less than 0.3 dB throughout the pass-band of 2.2 GHz- 10.6 GHz, while the return loss is more than 18 dB. And it has rejection level of 36 dB at GPS band.展开更多
Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circ...Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circular nanotube arrays, two photonic band gaps are emerged in the transmission spectra offing-shaped nanotube arrays, the two band gaps and transmission spectra are adjusted by the length, inner radius, intertube spacing and the dielectric constants of the core and embedding medium, and magnitude modification, redshift and blueshift of the resonance modes are observed. A metallic ring-shaped nanotube arrays for subwavelength band-stop filter in the range of visible light can be achieved. To understand its physical origin, field-interference mechanism was suggested by the field distributions. The proposed nanostructures and results may have great potential applications in subwavelength near-field optics.展开更多
In this paper, we present a terahertz (THz) band-stop filter realized by fabricating a metallic T-shaped resonator pattern on the high-resistivity silicon wafer. The filter exhibits two typical band-stop response char...In this paper, we present a terahertz (THz) band-stop filter realized by fabricating a metallic T-shaped resonator pattern on the high-resistivity silicon wafer. The filter exhibits two typical band-stop response characteristics depending on the incident direction of electric field with respect to the T-shaped resonator. When the long and the short arms of the T-shaped resonator were electrically polarized by changing the incident THz wave transmission directions, the corresponding central frequencies of the band-stop filter were found to be 0.436 THz at 42dB and 0.610 THz at 28 dB, respectively. Using three-dimensional (3D) finite-integral time-domain simulations, the band-stop filter was designed, which can operate in the wavelength between 0.2 and 0.8 THz. Experimental verification was also performed using a free space THz time-domain spectroscopy system. The band-stop response characteristics are in good agreement with the simulation results. The interesting THz band-stop filtering properties suggest a promising application in the modern THz communication systems, THz time-domain spectroscopic imaging and THz continuous wave imaging.展开更多
基金Supported by National Natural Science Foundation of China (No. 60802048)New Teacher PhD Programs Foundation of Ministry of Education of China (No. 200700056105)
文摘A novel simplified method is presented to design FIR filter with controllable center frequency. The properties of transfer curves for all-phase filters are illustrated under 3 windowing conditions. By combining single-window all-phase filter design steps and double phase-shift combination, a series of design formulas for point-pass filter, notch filter, band-pass filter and band-stop filter are derived, thus the design computation complexity is greatly reduced. Experiments prove that the center frequency of all the filters can be accurately specified at arbitrary position by adjusting frequency parameters m and λ.
基金supported by the IT R&D program of MKE/ⅡTA:Study of technologies for improvingthe RF spectrum characteristics by using the meta-electromagnetic structure[2009-F-033-01]
文摘This paper presents a compact Ultra-Wideband (UWB) band-pass filter using a high-pass filter and a low-pass one, and the resonator with lumped elements. The structure of our proposed bandpass filter is very simple and the Defected Ground Structure(DGS) structure is used to get the low-pass filter characteristics. This proposed band-pass filter can be much smaller than a cascaded type filter. As a result of simulation, the insertion loss is less than 0.3 dB throughout the pass-band of 2.2 GHz- 10.6 GHz, while the return loss is more than 18 dB. And it has rejection level of 36 dB at GPS band.
基金Projects(11164007,61275174)supported by the National Natural Science Foundation of ChinaProject(20100162110068)supported by the Doctoral Program of Higher Education of China+1 种基金Project(20132BAB212007)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ11107)supported by Scientific Foundation of Jiangxi Education Department,China
文摘Metallic ring-shaped nanotube arrays are proposed and its optical transmission properties are studied by using finite-difference time-domain (FDTD) method. Compared with the transmission spectra of conventional circular nanotube arrays, two photonic band gaps are emerged in the transmission spectra offing-shaped nanotube arrays, the two band gaps and transmission spectra are adjusted by the length, inner radius, intertube spacing and the dielectric constants of the core and embedding medium, and magnitude modification, redshift and blueshift of the resonance modes are observed. A metallic ring-shaped nanotube arrays for subwavelength band-stop filter in the range of visible light can be achieved. To understand its physical origin, field-interference mechanism was suggested by the field distributions. The proposed nanostructures and results may have great potential applications in subwavelength near-field optics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61171051, 50971094, 61072136)
文摘In this paper, we present a terahertz (THz) band-stop filter realized by fabricating a metallic T-shaped resonator pattern on the high-resistivity silicon wafer. The filter exhibits two typical band-stop response characteristics depending on the incident direction of electric field with respect to the T-shaped resonator. When the long and the short arms of the T-shaped resonator were electrically polarized by changing the incident THz wave transmission directions, the corresponding central frequencies of the band-stop filter were found to be 0.436 THz at 42dB and 0.610 THz at 28 dB, respectively. Using three-dimensional (3D) finite-integral time-domain simulations, the band-stop filter was designed, which can operate in the wavelength between 0.2 and 0.8 THz. Experimental verification was also performed using a free space THz time-domain spectroscopy system. The band-stop response characteristics are in good agreement with the simulation results. The interesting THz band-stop filtering properties suggest a promising application in the modern THz communication systems, THz time-domain spectroscopic imaging and THz continuous wave imaging.