This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed a...This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed axial compressor with a single rotor.The jet induced by the plasma actuator adds momentum to the flow in the tip region and has a significant impact on the tip-gap flow.Experiments are carried out on a low speed axial compressor with a single rotor.The static pressure is measured at both the rotor inlet and outlet.The flow coefficient and pressure rise coefficient are calculated.Then the characteristic line is acquired to show the overall performance of the compressor.With unsteady plasma actuation of 18kV and 60W the compressor stability range improvement is realized at rotor speed of 1500 r/min – 2400 r/min.展开更多
基金supported by the National Natural Science Foundation of China,project No.50906085International S&T Cooperation Program of China,project No.2013DFR61080
文摘This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed axial compressor with a single rotor.The jet induced by the plasma actuator adds momentum to the flow in the tip region and has a significant impact on the tip-gap flow.Experiments are carried out on a low speed axial compressor with a single rotor.The static pressure is measured at both the rotor inlet and outlet.The flow coefficient and pressure rise coefficient are calculated.Then the characteristic line is acquired to show the overall performance of the compressor.With unsteady plasma actuation of 18kV and 60W the compressor stability range improvement is realized at rotor speed of 1500 r/min – 2400 r/min.