The flammability characterization and thermal composition of polymers flame retarded by decabromodiphenylethane (DBDPE) and antimony trioxide (Sb2O3) were studied by cone calorimeter and thermogravimetry (TG). The res...The flammability characterization and thermal composition of polymers flame retarded by decabromodiphenylethane (DBDPE) and antimony trioxide (Sb2O3) were studied by cone calorimeter and thermogravimetry (TG). The results show that ABS/DBDPE/Sb2O3 has the similar flammability parameters and thermal composition curves to ABS/DBDPO/Sb2O3. It suggests that DBDPE/Sb2O3 has the similar flame retardant behavior to DBDPO/Sb2O3. The heat release rate (HRR) and the effect heat combustion (EHC) curves of polymers flame retarded by DBDPE/Sb2O3 all decrease, but the mass loss rate (MLR) curve slightly increase. It shows that the decrease of HRR is not due to the increase of char formation ratio but the generation of incombustible gases. The major flame retardant mechanism of DBDPE/Sb2O3 is gas phase flame retardant mechanism. Increasing content of Sb2O3 in DBDPE/Sb2O3 can improve the flame retardant property and thermal stability of acrylonitrile butadiene styrene. Sb2O3 has a good synergistic effect with DBDPE.展开更多
Internal reformation of low steam methane fuel is highly beneficial for improving the energy efficiency and reducing the system complexity and cost of solid oxide fuel cells(SOFCs).However,anode coking for the Ni-base...Internal reformation of low steam methane fuel is highly beneficial for improving the energy efficiency and reducing the system complexity and cost of solid oxide fuel cells(SOFCs).However,anode coking for the Ni-based anode should be prevented before the technology becomes a reality.A multi-physics fully coupled model is employed to simulate the operations of SOFCs fueled by low steam methane.The multi-physics model produces I-V relations that are in excellent agreement with the experimental results.The multi-physics model and the experimental non-coking current density deduced kinetic carbon activity criterion are used to examine the effect of operating parameters and the anode diffusion barrier layer on the propensity of carbon deposition.The interplays among the fuel utilization ratio,current generation,thickness of the barrier layer and the cell operating voltage are revealed.It is demonstrated that a barrier layer of 400μm thickness is an optimal and safe anode design to achieve high power density and non-coking operations.The anode structure design can be very useful for the development of high efficiency and low cost SOFC technology.展开更多
基金Project(20574020) supported by the National Natural Science Foundation of China
文摘The flammability characterization and thermal composition of polymers flame retarded by decabromodiphenylethane (DBDPE) and antimony trioxide (Sb2O3) were studied by cone calorimeter and thermogravimetry (TG). The results show that ABS/DBDPE/Sb2O3 has the similar flammability parameters and thermal composition curves to ABS/DBDPO/Sb2O3. It suggests that DBDPE/Sb2O3 has the similar flame retardant behavior to DBDPO/Sb2O3. The heat release rate (HRR) and the effect heat combustion (EHC) curves of polymers flame retarded by DBDPE/Sb2O3 all decrease, but the mass loss rate (MLR) curve slightly increase. It shows that the decrease of HRR is not due to the increase of char formation ratio but the generation of incombustible gases. The major flame retardant mechanism of DBDPE/Sb2O3 is gas phase flame retardant mechanism. Increasing content of Sb2O3 in DBDPE/Sb2O3 can improve the flame retardant property and thermal stability of acrylonitrile butadiene styrene. Sb2O3 has a good synergistic effect with DBDPE.
基金supported by the National Natural Science Foundation of China (No.11574284 abd No.11774324)the National Basic Research Program of China (No.2012CB215405)Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Internal reformation of low steam methane fuel is highly beneficial for improving the energy efficiency and reducing the system complexity and cost of solid oxide fuel cells(SOFCs).However,anode coking for the Ni-based anode should be prevented before the technology becomes a reality.A multi-physics fully coupled model is employed to simulate the operations of SOFCs fueled by low steam methane.The multi-physics model produces I-V relations that are in excellent agreement with the experimental results.The multi-physics model and the experimental non-coking current density deduced kinetic carbon activity criterion are used to examine the effect of operating parameters and the anode diffusion barrier layer on the propensity of carbon deposition.The interplays among the fuel utilization ratio,current generation,thickness of the barrier layer and the cell operating voltage are revealed.It is demonstrated that a barrier layer of 400μm thickness is an optimal and safe anode design to achieve high power density and non-coking operations.The anode structure design can be very useful for the development of high efficiency and low cost SOFC technology.