We collect seismic moment tensors of the earthquakes occurring from 1900 to 2013 in and around the Chinese mainland and summarize the surface ruptures and displacements of 70 earthquakes with M S≥7. 0. We divide thes...We collect seismic moment tensors of the earthquakes occurring from 1900 to 2013 in and around the Chinese mainland and summarize the surface ruptures and displacements of 70 earthquakes with M S≥7. 0. We divide these large earthquakes into three types. Type A contains earthquakes with surface ruptures and displacements. Type B is earthquakes without displacements and Type C is those without any of this data. We simulate a triangular distribution of displacements for Type B and C. Then,we segment these large earthquakes by using their displacements and surface ruptures. Finally,kinematic models are determined from earthquake data and Bicubic Bessel spline functions. The results show that,first of all,the reasonability and spatial consistency of defined models are advanced.Strain rates have better continuity and are comparable with geologic and geodetic results in Himalaya thrust fault zones. The strain rates decrease in the Tarim basin and the Altun Tagh fault zones because of their low seismicity. The direction of compressional deformation in Gobi-Altay is changed from SE to NE and its extensional direction is changed from NE to NW. The extensional deformation in the Ordos block is diminished obviously. Secondly,earthquakes account for 30- 50% of expected motion of India relative to Eurasia determined from the NUVEL-1A model,with a missing component of 20 mm / a which may contain aseismic deformation such as fault creep and folds,the missing parts of earthquake data and elastic strain energy released by potential earthquakes.展开更多
The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2...The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2014 and the focal mechanisms of the former strong earthquakes around it,the authors deduced that the seismogenic fault of the MS7.3earthquake is the east branch of the Ashikule fault.The MS7.3 earthquake in 2014 and the MS7.3 earthquake in 2008 are two strong earthquake events on the different sections of the Altun Tagh fault,where the fault behavior changes from sinistral slip to normal faulting because of the extensional tail effects in the southern end of the Altun Tagh fault.It is concluded that the two MS7.3 earthquakes have the same dynamic source,and the MS7.3earthquake in 2008 promoted the occurrence of the MS7.3 earthquake in 2014.Finally,we calculate the Coulomb stress change to the seismogenic fault of the MS7.3 earthquake in2014 from the MS7.3 earthquake in 2008 using the layered crust model.The result also shows that the MS7.3 earthquake in 2008 accelerated the occurrence of the MS7.3earthquake in 2014.展开更多
Based on the physical model of Brownian passage time,the probabilities of recurrence of strong earthquakes on the major active faults in China are calculated in different predictive time spans,based mainly on the anal...Based on the physical model of Brownian passage time,the probabilities of recurrence of strong earthquakes on the major active faults in China are calculated in different predictive time spans,based mainly on the analysis of the earthquake preparation process before a strong earthquake occurs. Furthermore,the seismic risks on active faults are studied. The results show that the earthquake probabilities on the Xianshuihe fault,the Altyn Tagh fault,the east Kunlun fault and Xiaojiang fault are significantly greater than other faults in the Chinese mainland,which indicates that the level of stress accumulation on these faults are higher than on other faults. Therefore,these faults may have a seismic risk for strong earthquake in future.展开更多
基金sponsored by the Youth Fund of National Natural Science Foundation of China(41302171)National Natural Science Foundation of China(41372345)
文摘We collect seismic moment tensors of the earthquakes occurring from 1900 to 2013 in and around the Chinese mainland and summarize the surface ruptures and displacements of 70 earthquakes with M S≥7. 0. We divide these large earthquakes into three types. Type A contains earthquakes with surface ruptures and displacements. Type B is earthquakes without displacements and Type C is those without any of this data. We simulate a triangular distribution of displacements for Type B and C. Then,we segment these large earthquakes by using their displacements and surface ruptures. Finally,kinematic models are determined from earthquake data and Bicubic Bessel spline functions. The results show that,first of all,the reasonability and spatial consistency of defined models are advanced.Strain rates have better continuity and are comparable with geologic and geodetic results in Himalaya thrust fault zones. The strain rates decrease in the Tarim basin and the Altun Tagh fault zones because of their low seismicity. The direction of compressional deformation in Gobi-Altay is changed from SE to NE and its extensional direction is changed from NE to NW. The extensional deformation in the Ordos block is diminished obviously. Secondly,earthquakes account for 30- 50% of expected motion of India relative to Eurasia determined from the NUVEL-1A model,with a missing component of 20 mm / a which may contain aseismic deformation such as fault creep and folds,the missing parts of earthquake data and elastic strain energy released by potential earthquakes.
基金funded by the Spark Program of Earthquake Science of China(XH15047Y)the National Science Foundation of China(41404043)
文摘The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2014 and the focal mechanisms of the former strong earthquakes around it,the authors deduced that the seismogenic fault of the MS7.3earthquake is the east branch of the Ashikule fault.The MS7.3 earthquake in 2014 and the MS7.3 earthquake in 2008 are two strong earthquake events on the different sections of the Altun Tagh fault,where the fault behavior changes from sinistral slip to normal faulting because of the extensional tail effects in the southern end of the Altun Tagh fault.It is concluded that the two MS7.3 earthquakes have the same dynamic source,and the MS7.3earthquake in 2008 promoted the occurrence of the MS7.3 earthquake in 2014.Finally,we calculate the Coulomb stress change to the seismogenic fault of the MS7.3 earthquake in2014 from the MS7.3 earthquake in 2008 using the layered crust model.The result also shows that the MS7.3 earthquake in 2008 accelerated the occurrence of the MS7.3earthquake in 2014.
基金supported by the National Natural Science Foundation of China(Grant No.41104036)
文摘Based on the physical model of Brownian passage time,the probabilities of recurrence of strong earthquakes on the major active faults in China are calculated in different predictive time spans,based mainly on the analysis of the earthquake preparation process before a strong earthquake occurs. Furthermore,the seismic risks on active faults are studied. The results show that the earthquake probabilities on the Xianshuihe fault,the Altyn Tagh fault,the east Kunlun fault and Xiaojiang fault are significantly greater than other faults in the Chinese mainland,which indicates that the level of stress accumulation on these faults are higher than on other faults. Therefore,these faults may have a seismic risk for strong earthquake in future.