We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction,...We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.展开更多
We theoretically study the high-order harmonic generation (HHG) from a hydrogen atom in an intense few-cycle chirped fundamental laser in combination with an ultraviolet (uv) controlling pulse. The high-order harm...We theoretically study the high-order harmonic generation (HHG) from a hydrogen atom in an intense few-cycle chirped fundamental laser in combination with an ultraviolet (uv) controlling pulse. The high-order harmonic spectrum is calculated by solving the time-dependent Schr6dinger equation using the split-operator method. In our calculation, we present the difference of the high-order harmonic spectrum from one-dimensional (1D) model hydrogen atom and three-dimensional (3D) real hydrogen atom. We found that the plateau of the high-order harmonic generation from the 1D ease and 3D case are all extended effectively to Iv -k 35Up due to the presence of the chirped laser pulse and the HHG supercontinuum spectrum is generated by adding an ultraviolet controlling pulse at a proper time, but the efficiency of the HHC for 3D case is more higher at the near cut-off region than the 1D case. Therefore, the generation of the attosecond pulse by synthesizing the harmonics near cut-off region have some slight differences between 1D and 3D simulations. As a real 3D case study, we show that an isolated 18 as pulse with a bandwidth of 232.5 eV is generated directly by optmizing the combination laser fields.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 110775069, 91026021, 11075068 and 10875054)the Fundamental Research Funds for the Central Universities (Grant No.lzujbky-2010-k08)the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education
文摘We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.We present a method to generate broadband isolated attosecond pulses. Using a two-color laser field, which is synthesized by a mid-infrared (12.5 fs, 2000 nm) and a weaker (12 fs, 800 nm) pulse in the x direction, a modulated supercontinuum from 290 to 430 eV is obtainable. By properly adding a second-harmonic control field of the driving pulse in the y direction, the short quantum path is well selected and a smooth supercontinuum from 290 to 440 eV is generated. The bandwidth of the supercontinuum can be controlled by adjusting the electric field of the control pulse in the x direction. When the electric field increases to 0.051 a.u., a smooth supercontinuum from 295 to 520 eV is obtained. Using this method we expect that isolated 63-as attosecond pulses with tunable central wavelengths are straightforwardly obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11044007 and 11047016the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20096203110001+1 种基金the Young Teachers Foundation of Northwest Normal University under Grant No. NWNU-LKQN-10-5Foundation of North west Normal University under Grant No. NWNU-KJCXGC-03-62
文摘We theoretically study the high-order harmonic generation (HHG) from a hydrogen atom in an intense few-cycle chirped fundamental laser in combination with an ultraviolet (uv) controlling pulse. The high-order harmonic spectrum is calculated by solving the time-dependent Schr6dinger equation using the split-operator method. In our calculation, we present the difference of the high-order harmonic spectrum from one-dimensional (1D) model hydrogen atom and three-dimensional (3D) real hydrogen atom. We found that the plateau of the high-order harmonic generation from the 1D ease and 3D case are all extended effectively to Iv -k 35Up due to the presence of the chirped laser pulse and the HHG supercontinuum spectrum is generated by adding an ultraviolet controlling pulse at a proper time, but the efficiency of the HHC for 3D case is more higher at the near cut-off region than the 1D case. Therefore, the generation of the attosecond pulse by synthesizing the harmonics near cut-off region have some slight differences between 1D and 3D simulations. As a real 3D case study, we show that an isolated 18 as pulse with a bandwidth of 232.5 eV is generated directly by optmizing the combination laser fields.