In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricati...In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricating performance of the additives increased in the following order:stearic acid>glycol monopalmitate>stearyl alcohol>ethyl palmitate>cetyl ethyl ether.The adsorption behavior of the additives on Fe(110)surface and Fe2O3(001)surface was investigated by molecular dynamics(MD)simulations to verify their lubricity performance.The results suggested that adsorption energies of the additives on Fe(110)surface are determined by the van der Waals forces,while adsorptions on Fe2O3(001)surface are significantly attributed to the electrostatic attractive forces.Higher values of adsorption energy of the additives on Fe2O3(001)surface indicate that the additive has more efficient lubricity enhancing properties.展开更多
Simulated adsorptive experiments using the axletree and lubricating oil containing anticorrosion additive were conducted,and the UV absorbance of the lubricating oil before and after the adsorptive experiments was mea...Simulated adsorptive experiments using the axletree and lubricating oil containing anticorrosion additive were conducted,and the UV absorbance of the lubricating oil before and after the adsorptive experiments was measured.Through the UV spectral measurements the difference in UV absorbance of the lubricating oil before and after the adsorptive experiments was identified,the adsorbed quantity of anticorrosion additive in the interfacial film between lubricating oil and bearing was calculated using the Lambert-Bell principle to verify the adsorption of corrosion inhibitor on the surface of friction pairs.Adsorption experiments on lubricating oil containing both antiwear and anticorrosion additives were carried out and the UV absorbance of lubricating oil samples before and after the experiments was measured to determine the difference in the UV absorbance among lubricating oil samples with the same mass fraction of anticorrosion additive and different mass fractions of antiwear additive.By measuring the ultraviolet spectral absorbance of lubricating oil samples and calculating the adsorbed quantity of anticorrosion additive in the interfacial film it was possible to determine the influence of antiwear additive on the quantity of adsorbed anticorrosion additive on the surface of friction pairs and verify the competitive adsorption relationship between the antiwear additive and the anticorrosion additive.展开更多
基金financially supported by "the Fundamental Research Funds for the Central Universities,China"(11CX06036A)
文摘In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricating performance of the additives increased in the following order:stearic acid>glycol monopalmitate>stearyl alcohol>ethyl palmitate>cetyl ethyl ether.The adsorption behavior of the additives on Fe(110)surface and Fe2O3(001)surface was investigated by molecular dynamics(MD)simulations to verify their lubricity performance.The results suggested that adsorption energies of the additives on Fe(110)surface are determined by the van der Waals forces,while adsorptions on Fe2O3(001)surface are significantly attributed to the electrostatic attractive forces.Higher values of adsorption energy of the additives on Fe2O3(001)surface indicate that the additive has more efficient lubricity enhancing properties.
文摘Simulated adsorptive experiments using the axletree and lubricating oil containing anticorrosion additive were conducted,and the UV absorbance of the lubricating oil before and after the adsorptive experiments was measured.Through the UV spectral measurements the difference in UV absorbance of the lubricating oil before and after the adsorptive experiments was identified,the adsorbed quantity of anticorrosion additive in the interfacial film between lubricating oil and bearing was calculated using the Lambert-Bell principle to verify the adsorption of corrosion inhibitor on the surface of friction pairs.Adsorption experiments on lubricating oil containing both antiwear and anticorrosion additives were carried out and the UV absorbance of lubricating oil samples before and after the experiments was measured to determine the difference in the UV absorbance among lubricating oil samples with the same mass fraction of anticorrosion additive and different mass fractions of antiwear additive.By measuring the ultraviolet spectral absorbance of lubricating oil samples and calculating the adsorbed quantity of anticorrosion additive in the interfacial film it was possible to determine the influence of antiwear additive on the quantity of adsorbed anticorrosion additive on the surface of friction pairs and verify the competitive adsorption relationship between the antiwear additive and the anticorrosion additive.