Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response...Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Iuflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI), Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial in- farction, and heart failure) in patients with AMI.展开更多
Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the recruitment of leukocytes to the endothelium, which causes inflammation and initiation of atherosclerosis. We have previously shown that endo...Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the recruitment of leukocytes to the endothelium, which causes inflammation and initiation of atherosclerosis. We have previously shown that endothelium-specific over-expression of class III deacetylase SIRT1 decreases atherosclerosis. We therefore addressed the hypothesis that SIRT1 suppresses ICAM-1 expression in the endothelial cells. Here, we found that expression of SIRT1 and ICAM-1 was significantly induced by PMA and ionomycin (PMA/Io) in human umbilical vein endothelial cells (HUVECs). Adenovirus-mediated over-expression of SIRT1 significantly inhibited PMA/Io-induced ICAM-1 expression (RNAi) resulted in increased expression of ICAM-1 in HUVECs in HUVECs. Knockdown of SIRT1 by RNA interference Luciferase report assay showed that over-expression of SIRT1 suppressed ICAM-1 promoter activity both in basic and in PMA/Io-induced conditions. We further found that SIRT1 was involved in transcription complex binding on the ICAM-1 promoter by chromatin immunoprecipitation (CHIP) assays. Furthermore, SIRT1 RNAi increased NF-~:B p65 binding ability to the ICAM-1 promoter by ChIP assays. Overall, these data suggests that SIRT1 inhibits ICAM-1 expression in endothelial cells, which may contribute to its anti-atherosclerosis effect.展开更多
文摘Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Iuflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI), Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial in- farction, and heart failure) in patients with AMI.
基金supported by National Natural Science Foundation of China(31271227,31028005,31021091)National Basic Research Program of China (2011CB503902,2012BAI39B03)
文摘Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the recruitment of leukocytes to the endothelium, which causes inflammation and initiation of atherosclerosis. We have previously shown that endothelium-specific over-expression of class III deacetylase SIRT1 decreases atherosclerosis. We therefore addressed the hypothesis that SIRT1 suppresses ICAM-1 expression in the endothelial cells. Here, we found that expression of SIRT1 and ICAM-1 was significantly induced by PMA and ionomycin (PMA/Io) in human umbilical vein endothelial cells (HUVECs). Adenovirus-mediated over-expression of SIRT1 significantly inhibited PMA/Io-induced ICAM-1 expression (RNAi) resulted in increased expression of ICAM-1 in HUVECs in HUVECs. Knockdown of SIRT1 by RNA interference Luciferase report assay showed that over-expression of SIRT1 suppressed ICAM-1 promoter activity both in basic and in PMA/Io-induced conditions. We further found that SIRT1 was involved in transcription complex binding on the ICAM-1 promoter by chromatin immunoprecipitation (CHIP) assays. Furthermore, SIRT1 RNAi increased NF-~:B p65 binding ability to the ICAM-1 promoter by ChIP assays. Overall, these data suggests that SIRT1 inhibits ICAM-1 expression in endothelial cells, which may contribute to its anti-atherosclerosis effect.