A dynamic sorption experiment was performed for removal of uranium (VI or 6+) from a leachate from an alum shale landfill with a diatomite-bentonite based sorbent in a laboratory scale. Such material was grounded a...A dynamic sorption experiment was performed for removal of uranium (VI or 6+) from a leachate from an alum shale landfill with a diatomite-bentonite based sorbent in a laboratory scale. Such material was grounded and treated chemically with H3PO4 (phosphoric acid) and thermally for improving its porosity and resistance to water flow. A specific surface area of 209 m2·g-1 was determined by the BET method. A sorption capacity of 30 μg·gl and 0.6 μg·g-1 was obtained at a pH of 7.5 and 4 respectively by means of Langmuir and Freundlich isotherm models. The flow rate was 3 mL·min-1 was effective for controlling the pH inside of the column. The sorption mechanism was investigated along with desorption of the element of interest for further process design considerations for a treatment unit on the landfill site.展开更多
To improve the understanding of the transport mechanism in shale gas reservoirs and build a theoretical basic for further researches on productivity evaluation and efficient exploitation, various gas transport mechani...To improve the understanding of the transport mechanism in shale gas reservoirs and build a theoretical basic for further researches on productivity evaluation and efficient exploitation, various gas transport mechanisms within a shale gas reservoir exploited by a horizontal well were thoroughly investigated, which took diffusion, adsorption/desorption and Darcy flow into account. The characteristics of diffusion in nano-scale pores in matrix and desorption on the matrix surface were both considered in the improved differential equations for seepage flow. By integrating the Langmuir isotherm desorption items into the new total dimensionless compression coefficient in matrix, the transport function and seepage flow could be formalized, simplified and consistent with the conventional form of diffusion equation. Furthermore, by utilizing the Laplace change and Sethfest inversion changes, the calculated results were obtained and further discussions indicated that transfer mechanisms were influenced by diffusion, adsorption/desorption. The research shows that when the matrix permeability is closed to magnitude of 10^-9D, the matrix flow only occurs near the surfacial matrix; as to the actual production, the central matrix blocks are barely involved in the production; the closer to the surface of matrix, the lower the pressure is and the more obvious the diffusion effect is; the behavior of adsorption/desorption can increase the matrix flow rate significantly and slow down the pressure of horizontal well obviously.展开更多
Understanding the adsorption and desorption behavior of methane has received considerable attention since it is one of the crucial aspects of the exploitation of shale gas.Unexpectedly,obvious hysteresis is observed f...Understanding the adsorption and desorption behavior of methane has received considerable attention since it is one of the crucial aspects of the exploitation of shale gas.Unexpectedly,obvious hysteresis is observed from the ideally reversible physical sorption of methane in some experiments.However,the underlying mechanism still remains an open problem.In this study,Monte Carlo(MC) and molecular dynamics(MD) simulations are carried out to explore the molecular mechanisms of adsorption/desorption hysteresis.First,a detailed analysis about the capillary condensation of methane in micropores is presented.The influence of pore width,surface strength,and temperature on the hysteresis loop is further investigated.It is found that a disappearance of hysteresis occurs above a temperature threshold.Combined with the phase diagram of methane,we explicitly point out that capillary condensation is inapplicable for the hysteresis of shale gas under normal temperature conditions.Second,a new mechanism,variation of pore throat size,is proposed and studied.For methane to pass through the throat,a certain energy is required due to the repulsive interaction.The required energy increases with shrinkage of the throat,such that the originally adsorbed methane cannot escape through the narrowed throat.These trapped methane molecules account for the hysteresis.Furthermore,the hysteresis loop is found to increase with the increasing pressure and decreasing temperature.We suggest that the variation of pore throat size can explain the adsorption/desorption hysteresis of shale gas.Our conclusions and findings are of great significance for guiding the efficient exploitation of shale gas.展开更多
文摘A dynamic sorption experiment was performed for removal of uranium (VI or 6+) from a leachate from an alum shale landfill with a diatomite-bentonite based sorbent in a laboratory scale. Such material was grounded and treated chemically with H3PO4 (phosphoric acid) and thermally for improving its porosity and resistance to water flow. A specific surface area of 209 m2·g-1 was determined by the BET method. A sorption capacity of 30 μg·gl and 0.6 μg·g-1 was obtained at a pH of 7.5 and 4 respectively by means of Langmuir and Freundlich isotherm models. The flow rate was 3 mL·min-1 was effective for controlling the pH inside of the column. The sorption mechanism was investigated along with desorption of the element of interest for further process design considerations for a treatment unit on the landfill site.
基金Foundation item: Project(PLN1129)supported by Opening Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), China
文摘To improve the understanding of the transport mechanism in shale gas reservoirs and build a theoretical basic for further researches on productivity evaluation and efficient exploitation, various gas transport mechanisms within a shale gas reservoir exploited by a horizontal well were thoroughly investigated, which took diffusion, adsorption/desorption and Darcy flow into account. The characteristics of diffusion in nano-scale pores in matrix and desorption on the matrix surface were both considered in the improved differential equations for seepage flow. By integrating the Langmuir isotherm desorption items into the new total dimensionless compression coefficient in matrix, the transport function and seepage flow could be formalized, simplified and consistent with the conventional form of diffusion equation. Furthermore, by utilizing the Laplace change and Sethfest inversion changes, the calculated results were obtained and further discussions indicated that transfer mechanisms were influenced by diffusion, adsorption/desorption. The research shows that when the matrix permeability is closed to magnitude of 10^-9D, the matrix flow only occurs near the surfacial matrix; as to the actual production, the central matrix blocks are barely involved in the production; the closer to the surface of matrix, the lower the pressure is and the more obvious the diffusion effect is; the behavior of adsorption/desorption can increase the matrix flow rate significantly and slow down the pressure of horizontal well obviously.
基金supported by the National Natural Science Foundation of China(Grant Nos.11525211,and 11472263)the CNPC-CAS Strategic Cooperation Research Program(Grant No.2015A-4812)+1 种基金Anhui Provincial Natural Science Foundation(Grant No.1408085J08)the Fundamental Research Funds for the Central Universities of China
文摘Understanding the adsorption and desorption behavior of methane has received considerable attention since it is one of the crucial aspects of the exploitation of shale gas.Unexpectedly,obvious hysteresis is observed from the ideally reversible physical sorption of methane in some experiments.However,the underlying mechanism still remains an open problem.In this study,Monte Carlo(MC) and molecular dynamics(MD) simulations are carried out to explore the molecular mechanisms of adsorption/desorption hysteresis.First,a detailed analysis about the capillary condensation of methane in micropores is presented.The influence of pore width,surface strength,and temperature on the hysteresis loop is further investigated.It is found that a disappearance of hysteresis occurs above a temperature threshold.Combined with the phase diagram of methane,we explicitly point out that capillary condensation is inapplicable for the hysteresis of shale gas under normal temperature conditions.Second,a new mechanism,variation of pore throat size,is proposed and studied.For methane to pass through the throat,a certain energy is required due to the repulsive interaction.The required energy increases with shrinkage of the throat,such that the originally adsorbed methane cannot escape through the narrowed throat.These trapped methane molecules account for the hysteresis.Furthermore,the hysteresis loop is found to increase with the increasing pressure and decreasing temperature.We suggest that the variation of pore throat size can explain the adsorption/desorption hysteresis of shale gas.Our conclusions and findings are of great significance for guiding the efficient exploitation of shale gas.