To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer...To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates.展开更多
The paper presented a new regular pattern (network structure ) of great earthquakes occurred in China's Mainland during the past 700 years, which may be helpful to improve the understanding of great earthquakes ...The paper presented a new regular pattern (network structure ) of great earthquakes occurred in China's Mainland during the past 700 years, which may be helpful to improve the understanding of great earthquakes and can serve as a base for the study of prediction of future great earthquakes. It can be done because there are quite complete and confident records of historical and recent earthquakes in a wide extent in China.展开更多
A major earthquake occurrence zone means a place where M ≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in C...A major earthquake occurrence zone means a place where M ≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in China is primarily associated with the NNE-directed push of the India plate, next with the westward subduction of the Pacific plate. The Chinese mainland is a grand mosaic structure of many crust blocks bounded by faults and sutures. When it is suffered from boundary stresses, deformation takes place along these faults or sutures while the block interiors remain relatively stable or intact. Since the Quaternary, for example, left slip on the Xianshuihe-Xiaojiang fault zone in southwestern China has produced a number of fault-depression basins in extensional areas during periods Q1 and Q2. In the Q3, the change of stress orientation and enhancement of tectonic movement made faults of varied trends link each other, and continued to be active till present day, producing active fanlt zones in this region. Usually major earthquakes occur at some special locations on these active fault zones. During these events, in the epicenter areas experience intensive deformation character- ized by large-amplitude rise and fall of neighboring sections, generation of horst-graben systems and dammed rivers. The studies on palaeoearthquakes suggest that major shocks of close magnitudes often repeated for several times at a same place. By comparison of the Chi-Chi, Taiwan event in 1999 and Yuza, Yunnan event in 1955, including contours of accelerations and intensities, destruction of buildings, and in contrast to the Xigeda formation in southwestern China, a sandwich model is established to account for the mechanism of deformation caused by major earthquakes. This model consists of three layers, i.e. the two walls of a fault and the ruptured zone intercalated between them. This ruptured zone is just the loci where stress is built up and released, and serves as a channel for seismic waves.展开更多
We collect seismic moment tensors of the earthquakes occurring from 1900 to 2013 in and around the Chinese mainland and summarize the surface ruptures and displacements of 70 earthquakes with M S≥7. 0. We divide thes...We collect seismic moment tensors of the earthquakes occurring from 1900 to 2013 in and around the Chinese mainland and summarize the surface ruptures and displacements of 70 earthquakes with M S≥7. 0. We divide these large earthquakes into three types. Type A contains earthquakes with surface ruptures and displacements. Type B is earthquakes without displacements and Type C is those without any of this data. We simulate a triangular distribution of displacements for Type B and C. Then,we segment these large earthquakes by using their displacements and surface ruptures. Finally,kinematic models are determined from earthquake data and Bicubic Bessel spline functions. The results show that,first of all,the reasonability and spatial consistency of defined models are advanced.Strain rates have better continuity and are comparable with geologic and geodetic results in Himalaya thrust fault zones. The strain rates decrease in the Tarim basin and the Altun Tagh fault zones because of their low seismicity. The direction of compressional deformation in Gobi-Altay is changed from SE to NE and its extensional direction is changed from NE to NW. The extensional deformation in the Ordos block is diminished obviously. Secondly,earthquakes account for 30- 50% of expected motion of India relative to Eurasia determined from the NUVEL-1A model,with a missing component of 20 mm / a which may contain aseismic deformation such as fault creep and folds,the missing parts of earthquake data and elastic strain energy released by potential earthquakes.展开更多
Wavelets are a useful tool for analyzing the time-frequency of a non-stable series and are widely applied in many fields. The process of earthquake preparation and occurrence is a non-linear process. In the paper, the...Wavelets are a useful tool for analyzing the time-frequency of a non-stable series and are widely applied in many fields. The process of earthquake preparation and occurrence is a non-linear process. In the paper, the wavelet method is used to analyze the series of earthquake data for the time period from 1900 to 2003 in the west of the Chinese mainland and its adjacent area (WCMAA), and to obtain the characteristic information for different time scales. In the past 103 years, there were four primary periods of regional earthquake activity in the area with durations of 42, 22, 7 and 14 years, respectively and the intensity of earthquake activity changing with time. It doesn’t make sense to talk about active or quiet periods of earthquake activity unless it is based on a specific time scale. In addition, the tendency analysis of earthquake activity using the primary period of seismic activity and wavelet coefficients of varied time scales indicates that the earthquake activity in this region will be high in the forthcoming years.展开更多
In this paper,we focused on earthquakes with M S≥7.0 in the Chinese mainland from1900 to 2012,calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster&...In this paper,we focused on earthquakes with M S≥7.0 in the Chinese mainland from1900 to 2012,calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster's test,then quantitatively analyzed the correlation between strong earthquakes in the Chinese mainland and tidal Coulomb failure stress.Research shows that among 57 strong earthquakes with focal mechanism solutions,over 71.9%took place within the tidal loading phase,with the p-value of 3.83%,indicating that strong earthquakes with M S≥7.0 in Chinese mainland have a certain correlation with lunisolar tidal Coulomb failure stress.In the active period,the p-value is4.56%,75.5%of earthquakes occurred in the tidal loading phase zone,and 50%of earthquakes occurred in the quiescence period,indicating that strong earthquakes in the active period were obviously triggered with the tidal Coulomb failure stress loading.展开更多
Based on the active crustal block structures, the Holocene active faults and the wave velocity structures with a resolution of 1°×1°, a two-dimensional finite element model for the tectonic stress-strai...Based on the active crustal block structures, the Holocene active faults and the wave velocity structures with a resolution of 1°×1°, a two-dimensional finite element model for the tectonic stress-strain field of the Chinese mainland is constructed in the paper. Using GPS measurements, the velocity boundary conditions for the model are deduced, then, the annual change patterns of the present-day stress-strain field of the Chinese mainland are simulated. The results show that (1) the general pattern of the recent tectonic deformation in the Chinese mainland is governed by the interactions of its surrounding plates, of which, the Indian Plate plays a major role. There is a NNE-directed velocity distribution in the west of the Chinese mainland. The maximum slip rate appears at the collision boundary. The north-directed components decrease, while the east-directed components increase gradually from south to north and from west to east. In the east part, there is a general east-directed movement, with a certain amount of south-directed components. (2) The present-day tectonic stress field in the Chinese mainland has undergone the process of enhancement in recent years, and this process presents a general pattern of radiating eastwards from the Qinghai-Xizang (Tibet) Plateau as the center. The general pattern is similar to the ambient tectonic stress field, indicating the inheritance of contemporary tectonic deformation on the Chinese mainland. (3) The maximum principal strain presents an obvious pattern of being high in the west and low in the east. The tectonic movement in the west is stronger than that in the east. Large active faults are all located in the high-value zones of maximum principal strain. However, the magnitude of strain is smaller in the interior of the active crustal blocks, which are enclosed by these faults. (4) The stress-strain field of the Sichuan-Yunnan region is unique. It may not be governed by collision of plates alone but a combination of the movement of peripheral active blocks, material flow in the lower crust or upper mantle and special tectonic geometry (such as the eastern Himalayan syntax) as well.展开更多
Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been perfor...Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been performed with results showing that the Wenchuan,Sichuan, China earthquake ( MS = 8.0) of May 12,2008 occurred on the Longmenshan Mountain active fault with an abnormally low slip rate.展开更多
基金supported by the National Hi-tech Research and Development Program of China(863 Program)(Grant No.2013AA092501)the China Geological Survey Projects(Grant Nos.GZH201100303 and GZH201100305)
文摘To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates.
基金The Central Level,Scientific Research Institutes for Basic R & D Special Fund Business (No.2060302)National Natural Science Foundation of China(No.40841016,No.40372131 and No.40702056)Old Experts Science Foundation of China Earthquake Administration(No.201039)
文摘The paper presented a new regular pattern (network structure ) of great earthquakes occurred in China's Mainland during the past 700 years, which may be helpful to improve the understanding of great earthquakes and can serve as a base for the study of prediction of future great earthquakes. It can be done because there are quite complete and confident records of historical and recent earthquakes in a wide extent in China.
文摘A major earthquake occurrence zone means a place where M ≥6 events have occurred since the Holocene and similar shocks may happen again in the future. The dynamic context of the major earthquake occurrence zones in China is primarily associated with the NNE-directed push of the India plate, next with the westward subduction of the Pacific plate. The Chinese mainland is a grand mosaic structure of many crust blocks bounded by faults and sutures. When it is suffered from boundary stresses, deformation takes place along these faults or sutures while the block interiors remain relatively stable or intact. Since the Quaternary, for example, left slip on the Xianshuihe-Xiaojiang fault zone in southwestern China has produced a number of fault-depression basins in extensional areas during periods Q1 and Q2. In the Q3, the change of stress orientation and enhancement of tectonic movement made faults of varied trends link each other, and continued to be active till present day, producing active fanlt zones in this region. Usually major earthquakes occur at some special locations on these active fault zones. During these events, in the epicenter areas experience intensive deformation character- ized by large-amplitude rise and fall of neighboring sections, generation of horst-graben systems and dammed rivers. The studies on palaeoearthquakes suggest that major shocks of close magnitudes often repeated for several times at a same place. By comparison of the Chi-Chi, Taiwan event in 1999 and Yuza, Yunnan event in 1955, including contours of accelerations and intensities, destruction of buildings, and in contrast to the Xigeda formation in southwestern China, a sandwich model is established to account for the mechanism of deformation caused by major earthquakes. This model consists of three layers, i.e. the two walls of a fault and the ruptured zone intercalated between them. This ruptured zone is just the loci where stress is built up and released, and serves as a channel for seismic waves.
基金sponsored by the Youth Fund of National Natural Science Foundation of China(41302171)National Natural Science Foundation of China(41372345)
文摘We collect seismic moment tensors of the earthquakes occurring from 1900 to 2013 in and around the Chinese mainland and summarize the surface ruptures and displacements of 70 earthquakes with M S≥7. 0. We divide these large earthquakes into three types. Type A contains earthquakes with surface ruptures and displacements. Type B is earthquakes without displacements and Type C is those without any of this data. We simulate a triangular distribution of displacements for Type B and C. Then,we segment these large earthquakes by using their displacements and surface ruptures. Finally,kinematic models are determined from earthquake data and Bicubic Bessel spline functions. The results show that,first of all,the reasonability and spatial consistency of defined models are advanced.Strain rates have better continuity and are comparable with geologic and geodetic results in Himalaya thrust fault zones. The strain rates decrease in the Tarim basin and the Altun Tagh fault zones because of their low seismicity. The direction of compressional deformation in Gobi-Altay is changed from SE to NE and its extensional direction is changed from NE to NW. The extensional deformation in the Ordos block is diminished obviously. Secondly,earthquakes account for 30- 50% of expected motion of India relative to Eurasia determined from the NUVEL-1A model,with a missing component of 20 mm / a which may contain aseismic deformation such as fault creep and folds,the missing parts of earthquake data and elastic strain energy released by potential earthquakes.
文摘Wavelets are a useful tool for analyzing the time-frequency of a non-stable series and are widely applied in many fields. The process of earthquake preparation and occurrence is a non-linear process. In the paper, the wavelet method is used to analyze the series of earthquake data for the time period from 1900 to 2003 in the west of the Chinese mainland and its adjacent area (WCMAA), and to obtain the characteristic information for different time scales. In the past 103 years, there were four primary periods of regional earthquake activity in the area with durations of 42, 22, 7 and 14 years, respectively and the intensity of earthquake activity changing with time. It doesn’t make sense to talk about active or quiet periods of earthquake activity unless it is based on a specific time scale. In addition, the tendency analysis of earthquake activity using the primary period of seismic activity and wavelet coefficients of varied time scales indicates that the earthquake activity in this region will be high in the forthcoming years.
基金supported by the Earthquake Science and Technology Development Fund of Lanzhou Institute of Seismology,CEA(2012M01)National Natural Science Foundation(41174059)China Earthquake Administration as a Work Assignment for Seismic Situation Tracing(2012020101)
文摘In this paper,we focused on earthquakes with M S≥7.0 in the Chinese mainland from1900 to 2012,calculated the lunisolar tidal Coulomb failure stress on the seismic fault plane and got the tidal phase through Schuster's test,then quantitatively analyzed the correlation between strong earthquakes in the Chinese mainland and tidal Coulomb failure stress.Research shows that among 57 strong earthquakes with focal mechanism solutions,over 71.9%took place within the tidal loading phase,with the p-value of 3.83%,indicating that strong earthquakes with M S≥7.0 in Chinese mainland have a certain correlation with lunisolar tidal Coulomb failure stress.In the active period,the p-value is4.56%,75.5%of earthquakes occurred in the tidal loading phase zone,and 50%of earthquakes occurred in the quiescence period,indicating that strong earthquakes in the active period were obviously triggered with the tidal Coulomb failure stress loading.
基金The project was supported bythe National Natural ScienceFoundation of China (40174029) the Joint Earthquake Science Foundation of China (105109) .
文摘Based on the active crustal block structures, the Holocene active faults and the wave velocity structures with a resolution of 1°×1°, a two-dimensional finite element model for the tectonic stress-strain field of the Chinese mainland is constructed in the paper. Using GPS measurements, the velocity boundary conditions for the model are deduced, then, the annual change patterns of the present-day stress-strain field of the Chinese mainland are simulated. The results show that (1) the general pattern of the recent tectonic deformation in the Chinese mainland is governed by the interactions of its surrounding plates, of which, the Indian Plate plays a major role. There is a NNE-directed velocity distribution in the west of the Chinese mainland. The maximum slip rate appears at the collision boundary. The north-directed components decrease, while the east-directed components increase gradually from south to north and from west to east. In the east part, there is a general east-directed movement, with a certain amount of south-directed components. (2) The present-day tectonic stress field in the Chinese mainland has undergone the process of enhancement in recent years, and this process presents a general pattern of radiating eastwards from the Qinghai-Xizang (Tibet) Plateau as the center. The general pattern is similar to the ambient tectonic stress field, indicating the inheritance of contemporary tectonic deformation on the Chinese mainland. (3) The maximum principal strain presents an obvious pattern of being high in the west and low in the east. The tectonic movement in the west is stronger than that in the east. Large active faults are all located in the high-value zones of maximum principal strain. However, the magnitude of strain is smaller in the interior of the active crustal blocks, which are enclosed by these faults. (4) The stress-strain field of the Sichuan-Yunnan region is unique. It may not be governed by collision of plates alone but a combination of the movement of peripheral active blocks, material flow in the lower crust or upper mantle and special tectonic geometry (such as the eastern Himalayan syntax) as well.
基金Funded as a sub-project entitled"Tectonic Patterns of Strong Earthquakes in the Central Asia Continent and Its Dynamic Setting(2008CB425703)"within the project"A Study on the Occurrence Mechanism of the Wenchuan Earthquake and Its Large-scale Regional Dynamic Setting" under the National Key Basic R & D Program (973 Program),China
文摘Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been performed with results showing that the Wenchuan,Sichuan, China earthquake ( MS = 8.0) of May 12,2008 occurred on the Longmenshan Mountain active fault with an abnormally low slip rate.