Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of ...Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in > 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration(> 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.展开更多
In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations ...In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations of terrestrial water storage (TWS) for two periods, 1982-2005 (baseline) and 2071-2100, under future climate scenarios A2 and B2 in the Yangtze River basin. The results show that the estimated TWS during the baseline period and under the two future climate scenarios have similar seasonal amplitudes of 60-70 mm. The higher values of TWS appear in June during the baseline period and under the B2 scenario, whereas the TWS under A2 shows two peaks in response to the related precipitation pattern. It also shows that the TWS is recharged from February to June during the baseline period, but it is replenished from March to June under the A2 and B2 scenarios. An analysis of the standard derivation of seasonal and interannual TWS time series under the three scenarios demonstrates that the seasonal TWS of the southeastern part of the Yangtze River basin varies remarkably and that the southeastern and central parts of the basin have higher variations in interannual TWS. With respect to the first mode of the Empirical Orthogonal Function (EOF), the inverse-phase change in seasonal TWS mainly appears across the Guizhou-Sichuan-Shaanxi belt, and the entire basin generally represents a synchronous change in interannual TWS. As a whole, the TWS under A2 presents a larger seasonal variation whereas that under B2 displays a greater interannual variation. These results imply that climate change could trigger severe disasters in the southeastern and central parts of the basin.展开更多
In his book Out of Control, Brzezinski speaks about a vacuum in Eurasia, with important geopolitical consequences. Which are the new challenges and risks on the Silk Road in the time of globalization, radicalization, ...In his book Out of Control, Brzezinski speaks about a vacuum in Eurasia, with important geopolitical consequences. Which are the new challenges and risks on the Silk Road in the time of globalization, radicalization, and freedom of movement? The paper will stress three challenges: the project "Economic zone on the Silk Road" (the leadership in economic performance is held by China and therefore the eastern political cultures have the necessary economic basis for asserting their independence), the influence of ETIM and IMU on the region and the role and place of Xinjiang, as a bridge between Central and South Asia; how they reflected on this way of old traditions and cultures and whether there is a "clash" between the Eastern religions on the "Silk Road" and Islam with its multi dimensions, between the thick black chador and the silk veil, called "tissue of wind", between spiritual, transcendental cognition (Daoism) and pragmatic mundane faith of Islam. I will conclude that the new challenges on the Silk Road create new borders between people--religious, linguistic, ethnical, and new identities. The main question is as follows: Shall we keep the cultural plurality and authenticity of the region?展开更多
A typhoon bogus data assimilation scheme (BDA) using dimension-reduced projection four-dimen-sional variational data assimilation (DRP-4-DVar),called DRP-BDA for short,is built in the Advanced Regional Eta Model (AREM...A typhoon bogus data assimilation scheme (BDA) using dimension-reduced projection four-dimen-sional variational data assimilation (DRP-4-DVar),called DRP-BDA for short,is built in the Advanced Regional Eta Model (AREM).As an adjoint-free approach,DRP-BDA saves time,and only several minutes are taken for the full BDA process.To evaluate its performance,the DRP-BDA is applied to a case study on a landfall ty-phoon,Fengshen (2008),from the Northwestern Pacific Ocean to Guangdong province,in which the bogus sea level pressure (SLP) is assimilated as a kind of observa-tion.The results show that a more realistic typhoon with correct center position,stronger warm core vortex,and more reasonable wind fields is reproduced in the analyzed initial condition through the new approach.Compared with the control run (CTRL) initialized with NCEP Final (FNL) Global Tropospheric Analyses,the DRP-BDA leads to an evidently positive impact on typhoon track forecasting and a small positive impact on typhoon inten-sity forecasting.Furthermore,the forecast landfall time conforms to the observed landfall time,and the forecast track error at the 36th hour is 32 km,which is much less than that of the CTRL (450 km).展开更多
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060104)
文摘Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in > 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration(> 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.
基金supported by the National Basic Research Program of China under Grants 2010CB951001 and 2010CB428403the National Natural Science Foundation of China under Grant 41075062the R&D Special Fund for Public Welfare Industry (Meteorology) under Grant GYHY201006037
文摘In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations of terrestrial water storage (TWS) for two periods, 1982-2005 (baseline) and 2071-2100, under future climate scenarios A2 and B2 in the Yangtze River basin. The results show that the estimated TWS during the baseline period and under the two future climate scenarios have similar seasonal amplitudes of 60-70 mm. The higher values of TWS appear in June during the baseline period and under the B2 scenario, whereas the TWS under A2 shows two peaks in response to the related precipitation pattern. It also shows that the TWS is recharged from February to June during the baseline period, but it is replenished from March to June under the A2 and B2 scenarios. An analysis of the standard derivation of seasonal and interannual TWS time series under the three scenarios demonstrates that the seasonal TWS of the southeastern part of the Yangtze River basin varies remarkably and that the southeastern and central parts of the basin have higher variations in interannual TWS. With respect to the first mode of the Empirical Orthogonal Function (EOF), the inverse-phase change in seasonal TWS mainly appears across the Guizhou-Sichuan-Shaanxi belt, and the entire basin generally represents a synchronous change in interannual TWS. As a whole, the TWS under A2 presents a larger seasonal variation whereas that under B2 displays a greater interannual variation. These results imply that climate change could trigger severe disasters in the southeastern and central parts of the basin.
文摘In his book Out of Control, Brzezinski speaks about a vacuum in Eurasia, with important geopolitical consequences. Which are the new challenges and risks on the Silk Road in the time of globalization, radicalization, and freedom of movement? The paper will stress three challenges: the project "Economic zone on the Silk Road" (the leadership in economic performance is held by China and therefore the eastern political cultures have the necessary economic basis for asserting their independence), the influence of ETIM and IMU on the region and the role and place of Xinjiang, as a bridge between Central and South Asia; how they reflected on this way of old traditions and cultures and whether there is a "clash" between the Eastern religions on the "Silk Road" and Islam with its multi dimensions, between the thick black chador and the silk veil, called "tissue of wind", between spiritual, transcendental cognition (Daoism) and pragmatic mundane faith of Islam. I will conclude that the new challenges on the Silk Road create new borders between people--religious, linguistic, ethnical, and new identities. The main question is as follows: Shall we keep the cultural plurality and authenticity of the region?
基金the Ministry of Finance of Chinathe China Meteorological Administration for the Special Project of Meteorological Sector (Grant No.GYHYQX200906009)the National Natural Science Foundation of China for the Innovation Group Project (Grant No.40821092)
文摘A typhoon bogus data assimilation scheme (BDA) using dimension-reduced projection four-dimen-sional variational data assimilation (DRP-4-DVar),called DRP-BDA for short,is built in the Advanced Regional Eta Model (AREM).As an adjoint-free approach,DRP-BDA saves time,and only several minutes are taken for the full BDA process.To evaluate its performance,the DRP-BDA is applied to a case study on a landfall ty-phoon,Fengshen (2008),from the Northwestern Pacific Ocean to Guangdong province,in which the bogus sea level pressure (SLP) is assimilated as a kind of observa-tion.The results show that a more realistic typhoon with correct center position,stronger warm core vortex,and more reasonable wind fields is reproduced in the analyzed initial condition through the new approach.Compared with the control run (CTRL) initialized with NCEP Final (FNL) Global Tropospheric Analyses,the DRP-BDA leads to an evidently positive impact on typhoon track forecasting and a small positive impact on typhoon inten-sity forecasting.Furthermore,the forecast landfall time conforms to the observed landfall time,and the forecast track error at the 36th hour is 32 km,which is much less than that of the CTRL (450 km).