A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR rean...A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting.展开更多
A study to estimate land surface movement caused by large surface excavations in sedimentary strata is presented.In stratified or jointed strata the stress relief driven movement adjacent to large excavations can be s...A study to estimate land surface movement caused by large surface excavations in sedimentary strata is presented.In stratified or jointed strata the stress relief driven movement adjacent to large excavations can be significantly larger than expected.High lateral stresses measured in Australia and other places around the world indicate that the ratio of horizontal to vertical stress has been particularly high at shallow depths.The in situ strata is in compression and during excavation,stress is relieved towards the opening causing strata movement.Large excavations such as,open cut mines or highway cuttings,can initiate an extensive horizontal slide of surface layers towards the excavation.These ground movements can be damaging to surface structures such as water storage dams and large buildings.Based on stress measurements at shallow depths in Australian coal mines the study presented here calculates and models the extent of potential ground movement along the bedding surface adjacent to large excavations and provides a new prediction tool of land movement at the excavation boundary that can benefit the geotechnical practitioners in the mining industry.展开更多
The observation stations of Northern China are divided into three regions:the arid Northwest China,the Loess Plateau,and the cool Northeast China.The consistencies,differences,and associated mechanisms of land surface...The observation stations of Northern China are divided into three regions:the arid Northwest China,the Loess Plateau,and the cool Northeast China.The consistencies,differences,and associated mechanisms of land surface thermal-hydrologic processes among the three regions were studied based on the normalization of major variables of land surface thermal-hydrologic processes,using data collected during prevailing summer monsoon period(July and August,2008).It is shown that differences of surface thermal-hydrologic processes are remarkable among the three regions because of different impacts of summer monsoon.Especially their soil wet layers occur at different depths,and the average albedo and its diurnal variations are distinctly different.Surface net short-wave radiation in the Loess Plateau is close to that in the cool Northeast China,but its surface net long-wave radiation is close to that in the arid Northwest China.And the ratio of net radiation to global solar radiation in the cool Northeast China is higher than the other two regions,though its temperature is lower.There are obvious regional differences in the ratios of surface sensible and latent heat fluxes to net radiation for the three regions because of distinct contribution of sensible and latent heat fluxesto land surface energy balance.The three regions are markedly different in the ratio of water vapor flux to pan evaporation,but they are consistent in the ratio of water vapor flux to precipitation.These results not only indicate different influences of climate and environmental factors on land surface thermal-hydrologic processes in the three regions,but also show that summer monsoon is important in the formation and variation of the pattern of land surface thermal-hydrologic processes.展开更多
Environmental and water issues are essentially complex interdisciplinary problems. Multiple models from different disciplines are usually integrated to solve those problems. Integrated modeling environment is an effec...Environmental and water issues are essentially complex interdisciplinary problems. Multiple models from different disciplines are usually integrated to solve those problems. Integrated modeling environment is an effective technical approach to model integration. Although a number of modeling environments worldwide are available, they cannot meet current challenges faced. Their old-fashion designs and original development purposes constrain their possible applications to the domain of hydrologic or land surface modeling. One of the challenges is that we intend to link knowledge database or ontology system to the modeling environment in order to make the modeling support more intelligent and powerful. In this paper, we designed and implemented an integrated modeling environment (HIME) for hydrological and land surface modeling purpose in a much extendable, efficient and easy use manner. With such design, a physical process was implemented as a module, or component. A new model can be generated in an intuitive way by linking module icons together and establishing their relationships. Following an introduction to the overall architecture, the designs for module linkage and data transfer between modules are described in details. Using XML based meta-information, modules in either source codes or binary form can be utilized by the environment. As a demonstration, with the help of HIME, we replaced the evaporation module of TOPMODEL with the evapotranspiration module from the Noah land surface model which explicitly accounts for vegetation transpiration. This example showed the effectiveness and efficiency of the modeling environment on model integration.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110202)the National Natural Science Foundation of China (Grant Nos. 41175073, 41471016, and U1133603)
文摘A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting.
文摘A study to estimate land surface movement caused by large surface excavations in sedimentary strata is presented.In stratified or jointed strata the stress relief driven movement adjacent to large excavations can be significantly larger than expected.High lateral stresses measured in Australia and other places around the world indicate that the ratio of horizontal to vertical stress has been particularly high at shallow depths.The in situ strata is in compression and during excavation,stress is relieved towards the opening causing strata movement.Large excavations such as,open cut mines or highway cuttings,can initiate an extensive horizontal slide of surface layers towards the excavation.These ground movements can be damaging to surface structures such as water storage dams and large buildings.Based on stress measurements at shallow depths in Australian coal mines the study presented here calculates and models the extent of potential ground movement along the bedding surface adjacent to large excavations and provides a new prediction tool of land movement at the excavation boundary that can benefit the geotechnical practitioners in the mining industry.
基金supported by State Key Program of National Natural Science Foundation of China (Grant No. 40830957)Public Welfare Research Project of China (Grant No. GYHY200806021)
文摘The observation stations of Northern China are divided into three regions:the arid Northwest China,the Loess Plateau,and the cool Northeast China.The consistencies,differences,and associated mechanisms of land surface thermal-hydrologic processes among the three regions were studied based on the normalization of major variables of land surface thermal-hydrologic processes,using data collected during prevailing summer monsoon period(July and August,2008).It is shown that differences of surface thermal-hydrologic processes are remarkable among the three regions because of different impacts of summer monsoon.Especially their soil wet layers occur at different depths,and the average albedo and its diurnal variations are distinctly different.Surface net short-wave radiation in the Loess Plateau is close to that in the cool Northeast China,but its surface net long-wave radiation is close to that in the arid Northwest China.And the ratio of net radiation to global solar radiation in the cool Northeast China is higher than the other two regions,though its temperature is lower.There are obvious regional differences in the ratios of surface sensible and latent heat fluxes to net radiation for the three regions because of distinct contribution of sensible and latent heat fluxesto land surface energy balance.The three regions are markedly different in the ratio of water vapor flux to pan evaporation,but they are consistent in the ratio of water vapor flux to precipitation.These results not only indicate different influences of climate and environmental factors on land surface thermal-hydrologic processes in the three regions,but also show that summer monsoon is important in the formation and variation of the pattern of land surface thermal-hydrologic processes.
基金supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q10-1)the National High Technology Research and Development Program of China (Grant No. 2008AA12Z205)the Chinese Academy of Sciences Action Plan for West Development (Grant No. KZCX2-XB2-09)
文摘Environmental and water issues are essentially complex interdisciplinary problems. Multiple models from different disciplines are usually integrated to solve those problems. Integrated modeling environment is an effective technical approach to model integration. Although a number of modeling environments worldwide are available, they cannot meet current challenges faced. Their old-fashion designs and original development purposes constrain their possible applications to the domain of hydrologic or land surface modeling. One of the challenges is that we intend to link knowledge database or ontology system to the modeling environment in order to make the modeling support more intelligent and powerful. In this paper, we designed and implemented an integrated modeling environment (HIME) for hydrological and land surface modeling purpose in a much extendable, efficient and easy use manner. With such design, a physical process was implemented as a module, or component. A new model can be generated in an intuitive way by linking module icons together and establishing their relationships. Following an introduction to the overall architecture, the designs for module linkage and data transfer between modules are described in details. Using XML based meta-information, modules in either source codes or binary form can be utilized by the environment. As a demonstration, with the help of HIME, we replaced the evaporation module of TOPMODEL with the evapotranspiration module from the Noah land surface model which explicitly accounts for vegetation transpiration. This example showed the effectiveness and efficiency of the modeling environment on model integration.