Rainfall and runoff energy results in soil erosion. This paper presents new the concepts of rainfall and runoff energy and analyzes the relationship of rainfall energy and runoff energy with sediment transport based o...Rainfall and runoff energy results in soil erosion. This paper presents new the concepts of rainfall and runoff energy and analyzes the relationship of rainfall energy and runoff energy with sediment transport based on the conversion theory of kinetic and potential energy using artificial rainfall and mechanical calculation. The results show that the ratio of sediment detachment in sloping fallow overland flow increases with the slope gradient,rainfall energy and runoff energy, while the sediment detachment ratio under raindrop impact are significantly higher than those under no raindrop impact. The sediment concentration increases with the slope gradient and rainfall energy; when the slope gradient and rainfall energy are constant, the sediment concentration decreases as the runoff energy increases. Rainfall disturbance coefficients have a logarithmic correlation with the rate of rainfall energy and runoff energy. On the same slope gradient,when the rainfall energy is constant, the disturbance coefficient decreases as the runoff energy increases,while when the runoff energy is constant, the disturbance coefficient increases as the rainfall energyincreases. Rainfall energy results in sediment detachment, and runoff energy is the transportation for erosion sediment. This showed that rainfall energy and runoff energy are important in the sediment detachment and transportation of shallow overland flow.展开更多
Jiangjia Ravine is a world-famous debris flow valley in Dongchuan,Yunnan Province,China.Every year large numbers of landslides and collapses happened and caused enormous damages to people's properties and lives.Wi...Jiangjia Ravine is a world-famous debris flow valley in Dongchuan,Yunnan Province,China.Every year large numbers of landslides and collapses happened and caused enormous damages to people's properties and lives.With longtime observation and testing in Jiangjia Ravine we had found out one kind of special landslide which had the characteristics of landslide and collapse.Landslide and collapse supplied sufficient materials for debris flow.When a debris flow broke out,some kind of intergrowth existed among rainfall,landslide and debris flow.In order to study the intergrowth and some key parameters,we carried out artificial rainfall landslide tests and model experiments to observe the phenomena such as collapse,surface slide and surface flow.By observing the experimental phenomena and monitoring water contents,the transformation process among landslide deposits and debris flow under the condition of rainfall had been analyzed.Research results revealed the relationship of this kind of intergrowth among rainfall,landslide and debris flow in Jiangjia Ravine.Meanwhile,it was found that this kind of intergrowth relationship existed only when the moisture content was in a certain range.That is,the critical state seemed to be existed in the transformation process.展开更多
Debris flows often occur in landslide deposits during heavy rainstorms.Debris flows are initiated by surface water runoff and unsaturated seepage under rainfall conditions.A physical model based on an infinitely long,...Debris flows often occur in landslide deposits during heavy rainstorms.Debris flows are initiated by surface water runoff and unsaturated seepage under rainfall conditions.A physical model based on an infinitely long,uniform and void-rich sediment layer was applied to analyze the triggering of debris-flow introduced in landslide deposits.To determine the initiation condition for rainfall-induced debris flows,we conducted a surface water runoff and saturated-unsaturated seepage numerical program to model rainfall infiltration and runoff on a slope.This program was combined with physical modeling and stability analysis to make certain the initiation condition for rainfall-introduced debris flows.Taking the landslide deposits at Wenjiagou gully as an example,the initiation conditions for debris flow were computed.The results show that increase height of surface-water runoff and the decrease of saturated sediment shear strength of are the main reasons for triggering debris-flows under heavy rainfall conditions.The debris-flow triggering is affected by the depth of surface-water runoff,the slope saturation and shear strength of the sediment.展开更多
A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocki...A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography(ERT), Terrestrial Laser Scanning(TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part(0~41 m) of the landslide was greaterthan in the central-front part(41~84 m) and(2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure:(1) gully erosion at the slope surface;(2) shallow sliding failure;(3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement(using traditional methods) indicated that long duration light rainfall(average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding(30.09 mm/d) during the critical failure sub-phase(EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.展开更多
基金supported by the National Natural Science Foundation of China(41571262)the Chinese Ministry of Water Resources Science and Technology Promotion Program(TG1308)
文摘Rainfall and runoff energy results in soil erosion. This paper presents new the concepts of rainfall and runoff energy and analyzes the relationship of rainfall energy and runoff energy with sediment transport based on the conversion theory of kinetic and potential energy using artificial rainfall and mechanical calculation. The results show that the ratio of sediment detachment in sloping fallow overland flow increases with the slope gradient,rainfall energy and runoff energy, while the sediment detachment ratio under raindrop impact are significantly higher than those under no raindrop impact. The sediment concentration increases with the slope gradient and rainfall energy; when the slope gradient and rainfall energy are constant, the sediment concentration decreases as the runoff energy increases. Rainfall disturbance coefficients have a logarithmic correlation with the rate of rainfall energy and runoff energy. On the same slope gradient,when the rainfall energy is constant, the disturbance coefficient decreases as the runoff energy increases,while when the runoff energy is constant, the disturbance coefficient increases as the rainfall energyincreases. Rainfall energy results in sediment detachment, and runoff energy is the transportation for erosion sediment. This showed that rainfall energy and runoff energy are important in the sediment detachment and transportation of shallow overland flow.
基金financially supported by the National Natural Science Foundation of China(Grant No.50709035,40672193)the Youth Science and Technology Dawn Plan of Wuhan,China(Grant No.20065004116-42)
文摘Jiangjia Ravine is a world-famous debris flow valley in Dongchuan,Yunnan Province,China.Every year large numbers of landslides and collapses happened and caused enormous damages to people's properties and lives.With longtime observation and testing in Jiangjia Ravine we had found out one kind of special landslide which had the characteristics of landslide and collapse.Landslide and collapse supplied sufficient materials for debris flow.When a debris flow broke out,some kind of intergrowth existed among rainfall,landslide and debris flow.In order to study the intergrowth and some key parameters,we carried out artificial rainfall landslide tests and model experiments to observe the phenomena such as collapse,surface slide and surface flow.By observing the experimental phenomena and monitoring water contents,the transformation process among landslide deposits and debris flow under the condition of rainfall had been analyzed.Research results revealed the relationship of this kind of intergrowth among rainfall,landslide and debris flow in Jiangjia Ravine.Meanwhile,it was found that this kind of intergrowth relationship existed only when the moisture content was in a certain range.That is,the critical state seemed to be existed in the transformation process.
基金supported by the Key Project of Chinese National Programs for Fundamental Research and Development (Grant No.2011CB409902)the National Natural Science Foundation of China (Grant No.41102194)
文摘Debris flows often occur in landslide deposits during heavy rainstorms.Debris flows are initiated by surface water runoff and unsaturated seepage under rainfall conditions.A physical model based on an infinitely long,uniform and void-rich sediment layer was applied to analyze the triggering of debris-flow introduced in landslide deposits.To determine the initiation condition for rainfall-induced debris flows,we conducted a surface water runoff and saturated-unsaturated seepage numerical program to model rainfall infiltration and runoff on a slope.This program was combined with physical modeling and stability analysis to make certain the initiation condition for rainfall-introduced debris flows.Taking the landslide deposits at Wenjiagou gully as an example,the initiation conditions for debris flow were computed.The results show that increase height of surface-water runoff and the decrease of saturated sediment shear strength of are the main reasons for triggering debris-flows under heavy rainfall conditions.The debris-flow triggering is affected by the depth of surface-water runoff,the slope saturation and shear strength of the sediment.
基金funded by International S&T Cooperation Program of China (ISTCP) (Grant No. 2013DFE23030)the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2014-273 and lzujbky-2015-133)
文摘A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography(ERT), Terrestrial Laser Scanning(TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part(0~41 m) of the landslide was greaterthan in the central-front part(41~84 m) and(2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure:(1) gully erosion at the slope surface;(2) shallow sliding failure;(3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement(using traditional methods) indicated that long duration light rainfall(average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding(30.09 mm/d) during the critical failure sub-phase(EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.