期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进随机森林算法在Android恶意软件检测中的应用
被引量:
3
1
作者
吴非
吴向前
陈晓燕
《新疆大学学报(自然科学版)》
CAS
北大核心
2017年第3期322-327,共6页
Random Forest作为一种常见的机器学习算法,不仅具备较高的分类回归性能,而且快速高效.传统的Random Forest算法并未在决策树的生成和选择上做深入研究,在本文中笔者提出一种降序去冗的寻优方式对机器学习中监督学习算法Random Forest...
Random Forest作为一种常见的机器学习算法,不仅具备较高的分类回归性能,而且快速高效.传统的Random Forest算法并未在决策树的生成和选择上做深入研究,在本文中笔者提出一种降序去冗的寻优方式对机器学习中监督学习算法Random Forest进行改进,在保证准确率的同时减少随机森林的冗余度,并应用于Android系统的恶意软件检测.经过五折交叉验证法验证,改进的Random Forest算法能够在较低的冗余度下保证较高的准确率,同时改进的算法准确率在与同条件下的原算法的准确率以及OOB模型下的准确率相差在1%以内,在与单模型分类算法KNN和集成式学习算法Adaboost M1的对比试验中改进的Random Forest算法要优于以上两者.
展开更多
关键词
RANDOM
FOREST
ANDROID
降序去冗
寻优
下载PDF
职称材料
题名
改进随机森林算法在Android恶意软件检测中的应用
被引量:
3
1
作者
吴非
吴向前
陈晓燕
机构
新疆大学信息科学与工程学院
新疆大学资源与环境科学学院
出处
《新疆大学学报(自然科学版)》
CAS
北大核心
2017年第3期322-327,共6页
基金
国家自然科学基金(61303231)
文摘
Random Forest作为一种常见的机器学习算法,不仅具备较高的分类回归性能,而且快速高效.传统的Random Forest算法并未在决策树的生成和选择上做深入研究,在本文中笔者提出一种降序去冗的寻优方式对机器学习中监督学习算法Random Forest进行改进,在保证准确率的同时减少随机森林的冗余度,并应用于Android系统的恶意软件检测.经过五折交叉验证法验证,改进的Random Forest算法能够在较低的冗余度下保证较高的准确率,同时改进的算法准确率在与同条件下的原算法的准确率以及OOB模型下的准确率相差在1%以内,在与单模型分类算法KNN和集成式学习算法Adaboost M1的对比试验中改进的Random Forest算法要优于以上两者.
关键词
RANDOM
FOREST
ANDROID
降序去冗
寻优
Keywords
Random Forest
Android
descending remove redundancy
optimizing
分类号
TP316 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进随机森林算法在Android恶意软件检测中的应用
吴非
吴向前
陈晓燕
《新疆大学学报(自然科学版)》
CAS
北大核心
2017
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部