期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
关于M/M/1排队系统的一个命题
1
作者 李必胜 《天津理工学院学报》 1994年第4期51-52,共2页
本文对《随机存储过程》书中涉及M/M/1排队系统的定理14提出疑义,并给出修正意见。
关键词 M/M/1排队系统 降梯时 忙期 闲期
下载PDF
A time-series modeling method based on the boosting gradient-descent theory 被引量:5
2
作者 GAO YunLong PAN JinYan +1 位作者 JI GuoLi GAO Feng 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1325-1337,共13页
The forecasting of time-series data plays an important role in various domains. It is of significance in theory and application to improve prediction accuracy of the time-series data. With the progress in the study of... The forecasting of time-series data plays an important role in various domains. It is of significance in theory and application to improve prediction accuracy of the time-series data. With the progress in the study of time-series, time-series forecasting model becomes more complicated, and consequently great concern has been drawn to the techniques in designing the forecasting model. A modeling method which is easy to use by engineers and may generate good results is in urgent need. In this paper, a gradient-boost AR ensemble learning algorithm (AREL) is put forward. The effectiveness of AREL is assessed by theoretical analyses, and it is demonstrated that this method can build a strong predictive model by assembling a set of AR models. In order to avoid fitting exactly any single training example, an insensitive loss function is introduced in the AREL algorithm, and accordingly the influence of random noise is reduced. To further enhance the capability of AREL algorithm for non-stationary time-series, improve the robustness of algorithm, discourage overfitting, and reduce sensitivity of algorithm to parameter settings, a weighted kNN prediction method based on AREL algorithm is presented. The results of numerical testing on real data demonstrate that the proposed modeling method and prediction method are effective. 展开更多
关键词 time-series forecasting BOOSTING ensemble learning OVERFITTING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部