利用IAEA\WMO\GNIP的降水稳定同位素资料,分析了中国降水稳定同位素的时空分布特征及其影响因素。结果表明,整体来看我国降水稳定同位素有明显的大陆效应和高度效应。各地大气降水线存在地域差异,内陆地区同一站点冬、夏半年也有明显差...利用IAEA\WMO\GNIP的降水稳定同位素资料,分析了中国降水稳定同位素的时空分布特征及其影响因素。结果表明,整体来看我国降水稳定同位素有明显的大陆效应和高度效应。各地大气降水线存在地域差异,内陆地区同一站点冬、夏半年也有明显差异,显示出水汽团特性的不同。不同地区降水稳定同位素(δ和过量氘)的季节变化特征明显不同,表明主要水汽来源存在季节性差异。通过对比长序列降水稳定同位素的年际变化与季风和ENSO指数的关系,发现ENSO与降水稳定同位素有显著的正相关,但不一定通过影响降水量来引起降水稳定同位素(stable isotope in precipitation,SIP)的变化。重点分析了我国降水量效应、温度效应的特点,指出沿海和西南等季风区主要受降水量的影响,北方非季风区温度效应起主要作用,交叉地带则两种效应都有影响。展开更多
Background,aim,and scope Stable isotope in water could respond sensitively to the variation of environment and be reserved in different geological archives,although they are scarce in the environment.And the methods d...Background,aim,and scope Stable isotope in water could respond sensitively to the variation of environment and be reserved in different geological archives,although they are scarce in the environment.And the methods derived from the stable isotope composition of water have been widely applied in researches on hydrometeorology,weather diagnosis,and paleoclimate reconstruction,which help well for understanding the water-cycle processes in one region.Here,it is aimed to explore the temporal changes of stable isotopes in precipitation from Adelaide,Australia and determine the influencing factors at different timescales.Materials and methods Based on the isotopic data of daily precipitation over four years collected in Adelaide,Australia,the variation characteristics of dailyδD,δ^(18)O,and dexcess in precipitation and its relationship with meteorological elements were analyzed.Results The results demonstrated the local meteoric water line(LMWL)in Adelaide,wasδD=6.38×δ^(18)O+6.68,with a gradient less than 8.There is a significant negative correlation between dailyδ^(18)O and precipitation amount or relative humidity at daily timescales in both the whole year and wither/summerhalf year(p<0.001),but a significant positive correlation between dailyδ^(18)O and temperature in the whole year and the winter half-year(p<0.001).Discussion The correlation coefficients betweenδ^(18)O and daily mean temperature didn’t show a significant positive correlation,which may be attributed to that the precipitation in Adelaide area in January was mainly influenced by strong convective weather,and the stable isotope values in precipitation were significantly negative.Furthermore,this propose was also evidenced by the results from dexcess of precipitation with larger value in the winter half-year than that in the summer half-year,which may be resulted from the precipitation events in winter are mostly influenced by oceanic water vapor,while the sources of water vapor in summer precipitation events are more complicated and influenced by strong convective weather.On the other hand,the slope and intercept of theδ^(18)O—P regression lines in the summer months(-0.41 and 0.50‰)are larger and smaller than those in the winter months(-0.22 and-2.15‰),respectively,indicating that the precipitation stable isotopes have a relatively stronger rainout effect in the summer months than in the winter months.Besides,the measured values ofδ^(18)O in daily precipitation have a good linear relationship with our simulated values ofδ^(18)O,demonstrating the established regression model could provide a reliable simulation for theδ^(18)O values in daily precipitation in Adelaide area.It’s worth noting that the precipitation events with low precipitation amount,low relative humidity and high temperature,usually had relatively small slope and intercept of MWL,implying that raindrops may be strongly affected by sub-cloud secondary evaporation in the falling process.Conclusions The variation ofδ^(18)O in daily precipitation from Adelaide region was controlled by different factors at different timescales.And the water vapor sources and the meteorological conditions of precipitation events(such as the degree of sub-cloud secondary evaporation)also played an important role on the variation ofδ^(18)O.Recommendations and perspectives Stable isotope in daily precipitation can provide more accurate information about water-cycle and atmosphere circulation,it is therefore necessary to continue to collect and analyze daily-scale precipitation data over a longer time span.The results of this study will provide the basis for the fields of hydrometeorology,meteorological diagnosis and paleoclimate reconstruction in Adelaide,Australia.展开更多
To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted fro...To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted from June 2013 to May 2014. The total of 100 precipitation samples were collected in Wushaoling national meteorological station located in the eastern of Qilian Mountains. The analysis indicates that the slope of Local Meteoric Water Line is lower than that of Global Meteoric Water Line. The average values of δ18 O and δD in precipitation are higher in summer but lower in winter. Except for negative correlation with relative humidity, the stable isotope values in precipitation are positive correlations with temperature, precipitation and water vapor pressure. Influenced by water vapor source, the values of d-excess are lower for the Westerly wind and the South Asia Monsoon onJuly and the Westerly wind and the East Asia Monsoon on August, but they are higher for the Westerly wind on other months, that they are also influenced by the weather conditions in rainfall process. The variation of stable isotope in precipitation exhibited significant temperature effect, and there is also some precipitation amount effect in spring and summer.展开更多
Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal va...Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal varia-tions of δD and δ^18O in precipitation was conducted in 2007-2008 in the Xilin River Basin, Inner Mongolia in the northern China. The 6D and δ^18O values for 54 precipitation samples range from +1.1%o to -34.7%0 and -3.0%0 to -269%0, respectively. This wide range indicates that stable isotopes in precipitation are primarily controlled by differ-ent condensation mechanisms as a function of air temperature and varying sources of vapor. The relationship between δD and δ^18O defined a well constrained line given by δD = 7.896180 + 9.5, which is nearly identical to the Meteoric Water Line in the northern China. The temperature effect is clearly displayed in this area. The results of backward tra-jectory of each precipitation day show that the vapor of the precipitation in cold season (October to March) mainly originates from the west while the moisture source is more complicated in warm season (April to September). A light precipitation amount effect existes at the precipitation event scale in this area. The vapor source of precipitation with higher d-excesses are mainly from the west wind or neighboring inland area and precipitation with lower d-excesses from a monsoon source from the southeastern China.展开更多
Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ^(18)O_(OH))of a weathering profile ...Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ^(18)O_(OH))of a weathering profile located in the Fujian Province,aiming to validate whether hydroxyl stable isotopes can indicate paleo-precipitation and paleo-temperature.Our results indicate that the d D and δ^(18)O_(OH)changes in the kaolinite hydroxyl of the weathering profile are basically determined by the isotopic composition of paleo-meteoric water and paleotemperature,respectively.Nevertheless,whether the d D and δ^(18)O_(OH)of kaolinite can quantitatively indicate paleo-precipitation and paleo-temperature needs to be verified further,and especially,the structural oxygen isotopic composition that is the essential element for the kaolinite formation temperature calculation has to be constrained in future work.展开更多
Stable isotope paleoaltimetry has provided unprecedented insights into the topographic histories of many of the world's highest mountain ranges. However, on the Tibetan Plateau(TP), stable isotopes from paleosols ...Stable isotope paleoaltimetry has provided unprecedented insights into the topographic histories of many of the world's highest mountain ranges. However, on the Tibetan Plateau(TP), stable isotopes from paleosols generally yield much higher paleoaltitudes than those based on fossils. It is therefore essential when attempting to interpret accurately this region's paleoaltitudes that the empirical calibrations of local stable isotopes and the relations between them are established. Additionally,it is vital that careful estimations be made when estimate how different isotopes sourced from different areas may have been influenced by different controls. We present here 29 hydrogen isotopic values for leaf wax-derived n-alkanes(i.e., δD_(wax) values,and abundance-weighted average δD values of C_(29) and C_(31)) in surface soils, as well as the δD values of soil water(δD_(sw)) samples(totaling 22) from Mount Longmen(LM), on the eastern TP(altitude ~0.8–4.0 km above sea level(asl), a region climatically affected by the East Asian Monsoon(EAM). We compared our results with published data from Mount Gongga(GG). In addition,47 river water samples, 55 spring water samples, and the daily and monthly summer precipitation records(from May to October,2015) from two precipitation observation stations were collected along the GG transect for δD analysis. LM soil δD_(wax) values showed regional differences and responded strongly to altitude, varying from.160‰ to.219‰, with an altitudinal lapse rate(ALR) of.18‰ km^(-1)(R^2=0.83; p<0.0001; n=29). These δD_(wax) values appeared more enriched than those from the GG transect by ~40‰. We found that both the climate and moisture sources led to the differences observed in soil δD_(wax) values between the LM and GG transects. We found that, as a general rule, ε_(wax/rw), ε_(wax/p) and εwax/sw values(i.e., the isotopic fractionation of δD_(wax) corresponding to δD_(rw), δD_p and δD_(sw)) increased with increasing altitude along both the LM and GG transects(up to 34‰ and 50‰, respectively). Basing its research on a comparative study of δD_(wax), δD_p, δD_(rw)(δD_(springw)) and δD_(sw), this paper discusses the effects of moisture recycling, glacier-fed meltwater, relative humidity(RH), evapotranspiration(ET), vegetation cover, latitude,topography and/or other factors on ε_(wax/p) values. Clearly, if ε_(wax-p) values at higher altitudes are calculated using smaller ε_(wax-p) values from lower altitudes, the calculated paleowaterδD_p values are going to be more depleted than the actual δD values, and any paleoaltitude would therefore be overestimated.展开更多
文摘利用IAEA\WMO\GNIP的降水稳定同位素资料,分析了中国降水稳定同位素的时空分布特征及其影响因素。结果表明,整体来看我国降水稳定同位素有明显的大陆效应和高度效应。各地大气降水线存在地域差异,内陆地区同一站点冬、夏半年也有明显差异,显示出水汽团特性的不同。不同地区降水稳定同位素(δ和过量氘)的季节变化特征明显不同,表明主要水汽来源存在季节性差异。通过对比长序列降水稳定同位素的年际变化与季风和ENSO指数的关系,发现ENSO与降水稳定同位素有显著的正相关,但不一定通过影响降水量来引起降水稳定同位素(stable isotope in precipitation,SIP)的变化。重点分析了我国降水量效应、温度效应的特点,指出沿海和西南等季风区主要受降水量的影响,北方非季风区温度效应起主要作用,交叉地带则两种效应都有影响。
文摘Background,aim,and scope Stable isotope in water could respond sensitively to the variation of environment and be reserved in different geological archives,although they are scarce in the environment.And the methods derived from the stable isotope composition of water have been widely applied in researches on hydrometeorology,weather diagnosis,and paleoclimate reconstruction,which help well for understanding the water-cycle processes in one region.Here,it is aimed to explore the temporal changes of stable isotopes in precipitation from Adelaide,Australia and determine the influencing factors at different timescales.Materials and methods Based on the isotopic data of daily precipitation over four years collected in Adelaide,Australia,the variation characteristics of dailyδD,δ^(18)O,and dexcess in precipitation and its relationship with meteorological elements were analyzed.Results The results demonstrated the local meteoric water line(LMWL)in Adelaide,wasδD=6.38×δ^(18)O+6.68,with a gradient less than 8.There is a significant negative correlation between dailyδ^(18)O and precipitation amount or relative humidity at daily timescales in both the whole year and wither/summerhalf year(p<0.001),but a significant positive correlation between dailyδ^(18)O and temperature in the whole year and the winter half-year(p<0.001).Discussion The correlation coefficients betweenδ^(18)O and daily mean temperature didn’t show a significant positive correlation,which may be attributed to that the precipitation in Adelaide area in January was mainly influenced by strong convective weather,and the stable isotope values in precipitation were significantly negative.Furthermore,this propose was also evidenced by the results from dexcess of precipitation with larger value in the winter half-year than that in the summer half-year,which may be resulted from the precipitation events in winter are mostly influenced by oceanic water vapor,while the sources of water vapor in summer precipitation events are more complicated and influenced by strong convective weather.On the other hand,the slope and intercept of theδ^(18)O—P regression lines in the summer months(-0.41 and 0.50‰)are larger and smaller than those in the winter months(-0.22 and-2.15‰),respectively,indicating that the precipitation stable isotopes have a relatively stronger rainout effect in the summer months than in the winter months.Besides,the measured values ofδ^(18)O in daily precipitation have a good linear relationship with our simulated values ofδ^(18)O,demonstrating the established regression model could provide a reliable simulation for theδ^(18)O values in daily precipitation in Adelaide area.It’s worth noting that the precipitation events with low precipitation amount,low relative humidity and high temperature,usually had relatively small slope and intercept of MWL,implying that raindrops may be strongly affected by sub-cloud secondary evaporation in the falling process.Conclusions The variation ofδ^(18)O in daily precipitation from Adelaide region was controlled by different factors at different timescales.And the water vapor sources and the meteorological conditions of precipitation events(such as the degree of sub-cloud secondary evaporation)also played an important role on the variation ofδ^(18)O.Recommendations and perspectives Stable isotope in daily precipitation can provide more accurate information about water-cycle and atmosphere circulation,it is therefore necessary to continue to collect and analyze daily-scale precipitation data over a longer time span.The results of this study will provide the basis for the fields of hydrometeorology,meteorological diagnosis and paleoclimate reconstruction in Adelaide,Australia.
基金funded by the Youth Innovation Promotion Association,CAS(2013274)National Nature Science Foundation of China(91547102 and 41661005)+2 种基金Gansu Province Science Fund for Distinguished Young Scholars(1506RJDA282)National Key R&D Program of China(2017YFC0404305)National Natural Science Foundation Innovation Research Group Science Foundation of China(41421061)
文摘To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted from June 2013 to May 2014. The total of 100 precipitation samples were collected in Wushaoling national meteorological station located in the eastern of Qilian Mountains. The analysis indicates that the slope of Local Meteoric Water Line is lower than that of Global Meteoric Water Line. The average values of δ18 O and δD in precipitation are higher in summer but lower in winter. Except for negative correlation with relative humidity, the stable isotope values in precipitation are positive correlations with temperature, precipitation and water vapor pressure. Influenced by water vapor source, the values of d-excess are lower for the Westerly wind and the South Asia Monsoon onJuly and the Westerly wind and the East Asia Monsoon on August, but they are higher for the Westerly wind on other months, that they are also influenced by the weather conditions in rainfall process. The variation of stable isotope in precipitation exhibited significant temperature effect, and there is also some precipitation amount effect in spring and summer.
基金Under the auspices of Nation Basic Research Program of China(No.2007CB411502)German Science Foundation(Research Unit 536)Independent Research Project from State Key Laboratory of Cryospheric Science(No.SKLCS-ZZ-2010-02)
文摘Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal varia-tions of δD and δ^18O in precipitation was conducted in 2007-2008 in the Xilin River Basin, Inner Mongolia in the northern China. The 6D and δ^18O values for 54 precipitation samples range from +1.1%o to -34.7%0 and -3.0%0 to -269%0, respectively. This wide range indicates that stable isotopes in precipitation are primarily controlled by differ-ent condensation mechanisms as a function of air temperature and varying sources of vapor. The relationship between δD and δ^18O defined a well constrained line given by δD = 7.896180 + 9.5, which is nearly identical to the Meteoric Water Line in the northern China. The temperature effect is clearly displayed in this area. The results of backward tra-jectory of each precipitation day show that the vapor of the precipitation in cold season (October to March) mainly originates from the west while the moisture source is more complicated in warm season (April to September). A light precipitation amount effect existes at the precipitation event scale in this area. The vapor source of precipitation with higher d-excesses are mainly from the west wind or neighboring inland area and precipitation with lower d-excesses from a monsoon source from the southeastern China.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.41225020 and41376049)National Programme on Global Change and Air-Sea Interaction(GASI-GEOGE-03)
文摘Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ^(18)O_(OH))of a weathering profile located in the Fujian Province,aiming to validate whether hydroxyl stable isotopes can indicate paleo-precipitation and paleo-temperature.Our results indicate that the d D and δ^(18)O_(OH)changes in the kaolinite hydroxyl of the weathering profile are basically determined by the isotopic composition of paleo-meteoric water and paleotemperature,respectively.Nevertheless,whether the d D and δ^(18)O_(OH)of kaolinite can quantitatively indicate paleo-precipitation and paleo-temperature needs to be verified further,and especially,the structural oxygen isotopic composition that is the essential element for the kaolinite formation temperature calculation has to be constrained in future work.
基金co-supported by the Chinese Academy of Sciences (Grant No. XDB03020100)the National Basic Research Program of China (Grant No. 2013CB956400)the National Natural Science Foudation of China (Grant Nos. 41321061, 41571014 & 41371022)
文摘Stable isotope paleoaltimetry has provided unprecedented insights into the topographic histories of many of the world's highest mountain ranges. However, on the Tibetan Plateau(TP), stable isotopes from paleosols generally yield much higher paleoaltitudes than those based on fossils. It is therefore essential when attempting to interpret accurately this region's paleoaltitudes that the empirical calibrations of local stable isotopes and the relations between them are established. Additionally,it is vital that careful estimations be made when estimate how different isotopes sourced from different areas may have been influenced by different controls. We present here 29 hydrogen isotopic values for leaf wax-derived n-alkanes(i.e., δD_(wax) values,and abundance-weighted average δD values of C_(29) and C_(31)) in surface soils, as well as the δD values of soil water(δD_(sw)) samples(totaling 22) from Mount Longmen(LM), on the eastern TP(altitude ~0.8–4.0 km above sea level(asl), a region climatically affected by the East Asian Monsoon(EAM). We compared our results with published data from Mount Gongga(GG). In addition,47 river water samples, 55 spring water samples, and the daily and monthly summer precipitation records(from May to October,2015) from two precipitation observation stations were collected along the GG transect for δD analysis. LM soil δD_(wax) values showed regional differences and responded strongly to altitude, varying from.160‰ to.219‰, with an altitudinal lapse rate(ALR) of.18‰ km^(-1)(R^2=0.83; p<0.0001; n=29). These δD_(wax) values appeared more enriched than those from the GG transect by ~40‰. We found that both the climate and moisture sources led to the differences observed in soil δD_(wax) values between the LM and GG transects. We found that, as a general rule, ε_(wax/rw), ε_(wax/p) and εwax/sw values(i.e., the isotopic fractionation of δD_(wax) corresponding to δD_(rw), δD_p and δD_(sw)) increased with increasing altitude along both the LM and GG transects(up to 34‰ and 50‰, respectively). Basing its research on a comparative study of δD_(wax), δD_p, δD_(rw)(δD_(springw)) and δD_(sw), this paper discusses the effects of moisture recycling, glacier-fed meltwater, relative humidity(RH), evapotranspiration(ET), vegetation cover, latitude,topography and/or other factors on ε_(wax/p) values. Clearly, if ε_(wax-p) values at higher altitudes are calculated using smaller ε_(wax-p) values from lower altitudes, the calculated paleowaterδD_p values are going to be more depleted than the actual δD values, and any paleoaltitude would therefore be overestimated.