Observations of accumulated precipitation are extremely valuable for effectively improving rainfall analysis and forecast. It is, however, difficult to use such observations directly through sequential assimilation me...Observations of accumulated precipitation are extremely valuable for effectively improving rainfall analysis and forecast. It is, however, difficult to use such observations directly through sequential assimilation methods, such as three-dimensional variational data assimilation or an Ensemble Kalman Filter. In this study, the authors illustrate a new approach that makes effective use of precipitation data to improve rainfall forecast. The new method directly obtains an optimal solution in a reduced space by fitting observations with historical time series generated by the model; it also avoids the implementation of tangent linear model and its adjoint. A lot of historical samples are produced as the ensemble of precipitation observations with the fully nonlinear forecast model. The results show that the new approach is capable of extracting information from precipitation observations to improve the analysis and forecast. This method provides comparable performance with the standard fourdimensional variational data assimilation at a much lower computational cost.展开更多
In order to understand the impact of initial conditions upon prediction accuracy of short-term forecast and nowcast of precipitation in South China, four experiments i.e. a control, an assimilation of conventional sou...In order to understand the impact of initial conditions upon prediction accuracy of short-term forecast and nowcast of precipitation in South China, four experiments i.e. a control, an assimilation of conventional sounding and surface data, testing with nudging rainwater data and the assimilation of radar-derived radial wind, are respectively conducted to simulate a case of warm-sector heavy rainfall that occurred over South China, by using the GRAPES_MESO model. The results show that (1) assimilating conventional surface and sounding observations helps improve the 24-h rainfall forecast in both the area and order of magnitude; (2) nudging rainwater contributes to a significant improvement of nowcast, and (3) the assimilation of radar-derived radial winds distinctly improves the 24-h rainfall forecast in both the area and order of magnitude. These results serve as significant technical reference for the study on short-term forecast and nowcast of precipitation over South China in the future.展开更多
基金the Ministry of Finance of China and China Meteorological Administration for the Special Project of Meteorological Sector (Grant No. GYHY(QX)2007-615)the National Basic Research Program of China (Grant No. 2005CB321703)
文摘Observations of accumulated precipitation are extremely valuable for effectively improving rainfall analysis and forecast. It is, however, difficult to use such observations directly through sequential assimilation methods, such as three-dimensional variational data assimilation or an Ensemble Kalman Filter. In this study, the authors illustrate a new approach that makes effective use of precipitation data to improve rainfall forecast. The new method directly obtains an optimal solution in a reduced space by fitting observations with historical time series generated by the model; it also avoids the implementation of tangent linear model and its adjoint. A lot of historical samples are produced as the ensemble of precipitation observations with the fully nonlinear forecast model. The results show that the new approach is capable of extracting information from precipitation observations to improve the analysis and forecast. This method provides comparable performance with the standard fourdimensional variational data assimilation at a much lower computational cost.
基金Public Welfare Project (GYHX(QX)2007-6-14)Basic operational fees for highest-level public welfare research institutes
文摘In order to understand the impact of initial conditions upon prediction accuracy of short-term forecast and nowcast of precipitation in South China, four experiments i.e. a control, an assimilation of conventional sounding and surface data, testing with nudging rainwater data and the assimilation of radar-derived radial wind, are respectively conducted to simulate a case of warm-sector heavy rainfall that occurred over South China, by using the GRAPES_MESO model. The results show that (1) assimilating conventional surface and sounding observations helps improve the 24-h rainfall forecast in both the area and order of magnitude; (2) nudging rainwater contributes to a significant improvement of nowcast, and (3) the assimilation of radar-derived radial winds distinctly improves the 24-h rainfall forecast in both the area and order of magnitude. These results serve as significant technical reference for the study on short-term forecast and nowcast of precipitation over South China in the future.