Stability of Defibrase in various pH buffer solutions was investigated. Enzyme-linked immuno-sorbent assay (ELISA) and coagulating time method were used to assess antigenic stability and coagulating stability, respect...Stability of Defibrase in various pH buffer solutions was investigated. Enzyme-linked immuno-sorbent assay (ELISA) and coagulating time method were used to assess antigenic stability and coagulating stability, respectively. The change of antigenic activities and coagulating activities of Defibrase in the same buffer solutions (pH 6, 7 and 8, with the exception of pH 3.6) showed similar tendency to decline with the time. Concentrated Defi-brase was relatively stable at neutral pH 6~7, more than 95% of its initial activities (100BUmL-1) was kept after a 10-day storage at 40 oC, whereas in pH 3.6 and pH 9 buffer solutions, diluted Defibrase was very labile. Addition of Triton X-100 or bovine serum albumin could effectively prevent loss of Defibrase by minimizing adsorption of De-fibrase to plastic surface (P<0.005). Concentration of Defibrase could also affect its stability in aqueous solutions.展开更多
The determination of gas pressure before uncovering coal in cross-cuts and in shafts is one of the important steps in pre- dicting coal and gas outbursts. However, the time spent for testing gas pressure is, at presen...The determination of gas pressure before uncovering coal in cross-cuts and in shafts is one of the important steps in pre- dicting coal and gas outbursts. However, the time spent for testing gas pressure is, at present, very long, seriously affecting the ap- plication of outburst prediction techniques in opening coal seams in cross-cuts and shafts. In order to reduce the time needed in gas pressure tests and to improve the accuracy of tests, we analyzed the process of gas pressure tests and examined the effect of the length of boreholes in coal seams in tests. The result shows that 1) the shorter the borehole, the easier the real pressure value of gas can be obtained and 2) the main factors affecting the time spent in gas pressure tests are the length of the borehole in coal seams, the gas emission time after the borehole has been formed and the quality of the borehole-sealing. The longer the length of the bore- hole, the longer the gas emission time and the larger the pressure-relief circle formed around the borehole, the longer the time needed for pressure tests. By controlling the length of the borehole in a test case in the Huainan mining area, and adopting a quick sealing technique using a sticky liquid method, the sealing quality was clearly improved and the gas emission time as well as the amount of gas discharged greatly decreased. Before the method described, the time required for the gas pressure to increase during the pressure test process, was more than 10 days. With our new method the required time is only 5 hours. In addition, the accuracy of the gas pressure test is greatly improved.展开更多
The organic phase separated from the interfacial crud provided by Dexing copper mine in Jiangxi, China, was analyzed by combined gas chromatography-mass spectroscopy. The results show that many kinds of emphiphiles co...The organic phase separated from the interfacial crud provided by Dexing copper mine in Jiangxi, China, was analyzed by combined gas chromatography-mass spectroscopy. The results show that many kinds of emphiphiles containing such hydrophilic groups as carbonyl, carboxyl, sulphonyl or acylamine exist in organic phase. Conclusively, Lix984N would degrade gradually during a long-term contact with the acidic aqueous feed and strip reagents. Lix84 and nonylphenol as effective components of Lix984N degraded almost completely after long-term recycling. Lix984N degraded through such reactions as Beck.mann rearrange, hydrolysis and sulphofication. The degradation of Lix984N would deteriorate solvent extraction and disengagement performance, and result in a more stable interracial emulsion.展开更多
Di-n-butyl phthalate (DBP),one of phthalate acid esters (PAEs),was investigated to determine its biodegradation rate using Xiangjiang River sediment and find potential DBP degraders in the enrichment culture of the se...Di-n-butyl phthalate (DBP),one of phthalate acid esters (PAEs),was investigated to determine its biodegradation rate using Xiangjiang River sediment and find potential DBP degraders in the enrichment culture of the sediment. The sediment sample was incubated with an initial concentration of DBP of 100 mg/L for 5 d. The biodegradation rate of DBP was detected using HPLC and the degraded products were analyzed by GC/MS. Subsequently,the microbial diversity of the enrichment culture was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results reveal that almost 100% of DBP is degraded after merely 3 d,generating two main degraded products:mono-butyl phthalate (MBP) and 9-octadecenoic acid. After a six-month enrichment period under the pressure of DBP,the dominant family in the final enrichment culture is clustered with the Comamonas sp.,the remaining are affiliated with Sphingomonas sp.,Hydrogenophaga sp.,Rhizobium sp.,and Acidovorax sp. The results show the potential of these bacteria to be used in the bioremediation of DBP in the environment.展开更多
A slightly modified method for 10-ethyl flavin was developed in the present study. The synthetic product was characterized by nuclear magnetic resonance(NMR) and mass spectrometry, and used to catalyze the photocataly...A slightly modified method for 10-ethyl flavin was developed in the present study. The synthetic product was characterized by nuclear magnetic resonance(NMR) and mass spectrometry, and used to catalyze the photocatalytic degradation of phenol, 2, 4-dichlorophenoxyacetic acid, p-nitrophenol, 4-chlorophenol, 4-methoxyphenol, 4-chloro-2-methyl-phenoxyacetic acid and2, 4, 5-trichloro-phenoxyacetic acid. Both HPLC(high performance liquid chromatography) and GC-MS data suggested that all phenols were degraded in the presence of either flavin at micromolar concentrations under direct sun light. A rapid breakdown of the phenols was observed. The degradation efficiency was clearly dependent on phenol type. In a decreasing order of degradation efficiency over a 2-h period, the phenols were 4-chlorophenol and 4-methoxyphenol(-80%) > phenoxyacetic acids(60%-65%) > nitrophenol and phenol(-35%).展开更多
文摘Stability of Defibrase in various pH buffer solutions was investigated. Enzyme-linked immuno-sorbent assay (ELISA) and coagulating time method were used to assess antigenic stability and coagulating stability, respectively. The change of antigenic activities and coagulating activities of Defibrase in the same buffer solutions (pH 6, 7 and 8, with the exception of pH 3.6) showed similar tendency to decline with the time. Concentrated Defi-brase was relatively stable at neutral pH 6~7, more than 95% of its initial activities (100BUmL-1) was kept after a 10-day storage at 40 oC, whereas in pH 3.6 and pH 9 buffer solutions, diluted Defibrase was very labile. Addition of Triton X-100 or bovine serum albumin could effectively prevent loss of Defibrase by minimizing adsorption of De-fibrase to plastic surface (P<0.005). Concentration of Defibrase could also affect its stability in aqueous solutions.
基金supported by the National Basic Research Program of China (No.2006CB202204-3).
文摘The determination of gas pressure before uncovering coal in cross-cuts and in shafts is one of the important steps in pre- dicting coal and gas outbursts. However, the time spent for testing gas pressure is, at present, very long, seriously affecting the ap- plication of outburst prediction techniques in opening coal seams in cross-cuts and shafts. In order to reduce the time needed in gas pressure tests and to improve the accuracy of tests, we analyzed the process of gas pressure tests and examined the effect of the length of boreholes in coal seams in tests. The result shows that 1) the shorter the borehole, the easier the real pressure value of gas can be obtained and 2) the main factors affecting the time spent in gas pressure tests are the length of the borehole in coal seams, the gas emission time after the borehole has been formed and the quality of the borehole-sealing. The longer the length of the bore- hole, the longer the gas emission time and the larger the pressure-relief circle formed around the borehole, the longer the time needed for pressure tests. By controlling the length of the borehole in a test case in the Huainan mining area, and adopting a quick sealing technique using a sticky liquid method, the sealing quality was clearly improved and the gas emission time as well as the amount of gas discharged greatly decreased. Before the method described, the time required for the gas pressure to increase during the pressure test process, was more than 10 days. With our new method the required time is only 5 hours. In addition, the accuracy of the gas pressure test is greatly improved.
基金Project (P1502) supported by Shanghai Leading Academic Discipline
文摘The organic phase separated from the interfacial crud provided by Dexing copper mine in Jiangxi, China, was analyzed by combined gas chromatography-mass spectroscopy. The results show that many kinds of emphiphiles containing such hydrophilic groups as carbonyl, carboxyl, sulphonyl or acylamine exist in organic phase. Conclusively, Lix984N would degrade gradually during a long-term contact with the acidic aqueous feed and strip reagents. Lix84 and nonylphenol as effective components of Lix984N degraded almost completely after long-term recycling. Lix984N degraded through such reactions as Beck.mann rearrange, hydrolysis and sulphofication. The degradation of Lix984N would deteriorate solvent extraction and disengagement performance, and result in a more stable interracial emulsion.
基金Project(50621063) supported by the National Nature Science Foundation of ChinaProject(NCET-06-0691) supported by the Program for New Century Excellent Talents in University
文摘Di-n-butyl phthalate (DBP),one of phthalate acid esters (PAEs),was investigated to determine its biodegradation rate using Xiangjiang River sediment and find potential DBP degraders in the enrichment culture of the sediment. The sediment sample was incubated with an initial concentration of DBP of 100 mg/L for 5 d. The biodegradation rate of DBP was detected using HPLC and the degraded products were analyzed by GC/MS. Subsequently,the microbial diversity of the enrichment culture was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results reveal that almost 100% of DBP is degraded after merely 3 d,generating two main degraded products:mono-butyl phthalate (MBP) and 9-octadecenoic acid. After a six-month enrichment period under the pressure of DBP,the dominant family in the final enrichment culture is clustered with the Comamonas sp.,the remaining are affiliated with Sphingomonas sp.,Hydrogenophaga sp.,Rhizobium sp.,and Acidovorax sp. The results show the potential of these bacteria to be used in the bioremediation of DBP in the environment.
文摘A slightly modified method for 10-ethyl flavin was developed in the present study. The synthetic product was characterized by nuclear magnetic resonance(NMR) and mass spectrometry, and used to catalyze the photocatalytic degradation of phenol, 2, 4-dichlorophenoxyacetic acid, p-nitrophenol, 4-chlorophenol, 4-methoxyphenol, 4-chloro-2-methyl-phenoxyacetic acid and2, 4, 5-trichloro-phenoxyacetic acid. Both HPLC(high performance liquid chromatography) and GC-MS data suggested that all phenols were degraded in the presence of either flavin at micromolar concentrations under direct sun light. A rapid breakdown of the phenols was observed. The degradation efficiency was clearly dependent on phenol type. In a decreasing order of degradation efficiency over a 2-h period, the phenols were 4-chlorophenol and 4-methoxyphenol(-80%) > phenoxyacetic acids(60%-65%) > nitrophenol and phenol(-35%).