针对非同构分布式阵列无法使用旋转不变子空间算法(estimation of signal parameters via rotation invariant technique algorithm,ESPRIT),同时为了提高非同构分布式阵列的角度估计精度,提出基于求根降秩算法(root rank reduction est...针对非同构分布式阵列无法使用旋转不变子空间算法(estimation of signal parameters via rotation invariant technique algorithm,ESPRIT),同时为了提高非同构分布式阵列的角度估计精度,提出基于求根降秩算法(root rank reduction estimator,root-RARE)的目标波达方向估计方法。由于分布式阵列的基线长度远大于半波长,合成方向图出现栅瓣,导致测角模糊。算法以root-RARE与多重信号分类算法(multiple signal classification,MUSIC)联合解模糊,以root-RARE得到的粗估计为参考,解整个非同构分布式阵列MUSIC谱估计的模糊,从而得到高精度无模糊的估计。推导非同构分布式阵列方向估计的克拉美罗界,分析算法的波达方向估计性能,同时分析分布式阵列方向估计时的基线模糊门限与信噪比门限之间的关系。仿真结果验证所提算法方向估计的正确性及有效性。展开更多
The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization(0 < p <...The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization(0 < p < 1), has been developed to approximate the rank function closely. We study the performance of projected gradient descent algorithm for solving the Schatten-p quasi-norm minimization(0 < p < 1) problem.Based on the matrix restricted isometry property(M-RIP), we give the convergence guarantee and error bound for this algorithm and show that the algorithm is robust to noise with an exponential convergence rate.展开更多
文摘针对非同构分布式阵列无法使用旋转不变子空间算法(estimation of signal parameters via rotation invariant technique algorithm,ESPRIT),同时为了提高非同构分布式阵列的角度估计精度,提出基于求根降秩算法(root rank reduction estimator,root-RARE)的目标波达方向估计方法。由于分布式阵列的基线长度远大于半波长,合成方向图出现栅瓣,导致测角模糊。算法以root-RARE与多重信号分类算法(multiple signal classification,MUSIC)联合解模糊,以root-RARE得到的粗估计为参考,解整个非同构分布式阵列MUSIC谱估计的模糊,从而得到高精度无模糊的估计。推导非同构分布式阵列方向估计的克拉美罗界,分析算法的波达方向估计性能,同时分析分布式阵列方向估计时的基线模糊门限与信噪比门限之间的关系。仿真结果验证所提算法方向估计的正确性及有效性。
基金supported by National Natural Science Foundation of China(Grant No.11171299)
文摘The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization(0 < p < 1), has been developed to approximate the rank function closely. We study the performance of projected gradient descent algorithm for solving the Schatten-p quasi-norm minimization(0 < p < 1) problem.Based on the matrix restricted isometry property(M-RIP), we give the convergence guarantee and error bound for this algorithm and show that the algorithm is robust to noise with an exponential convergence rate.