频控阵(Frequency Diversity Array,FDA)雷达于2006年由Antonik和Wicks提出.由于FDA雷达每个相邻的天线之间存在一个频率偏移,因此在发射阵列存在距离角度二维依赖性.而对于双基地频控阵多输入多输出(FDA-Multiple Input Multiple Outpu...频控阵(Frequency Diversity Array,FDA)雷达于2006年由Antonik和Wicks提出.由于FDA雷达每个相邻的天线之间存在一个频率偏移,因此在发射阵列存在距离角度二维依赖性.而对于双基地频控阵多输入多输出(FDA-Multiple Input Multiple Output,FDA-MIMO)雷达而言,在导向矢量中耦合了波离方向、到达方向、距离(Direction Of Departure-Direction Of Arrival-range,DOD-DOA-range)三个信息,如何对三者信息进行解耦便成为研究的重点.本文针对双基地FDA-MIMO雷达的目标参数估计问题,提出了一个张量框架下的降维多重信号分类(Reduced-Dimension MUltiple SIgnal Classification,RD-MUSIC)的参数估计算法.首先,为了将发射阵列中的DOD和距离信息进行解耦,需要对发射阵列进行子阵的划分.紧接着利用高阶奇异值分解(High-Order-Singular Value Decomposition,HOSVD)算法获得信号子空间,并构建二维空间谱函数.其次,通过拉格朗日算法对空间谱进行降维,使其仅与DOA有关,从而得到DOA估计.然后利用子阵之间的频率增量来对DOD和距离信息进行解耦,同时消除相位模糊,最终得到与DOA估计自动匹配的DOD和距离估计.所提算法利用高维数据的多维结构提高了估计精度,同时能够有效地降低运算复杂度.数值实验证明了所提算法性能的优越性.展开更多
The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal cla...The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.展开更多
文摘频控阵(Frequency Diversity Array,FDA)雷达于2006年由Antonik和Wicks提出.由于FDA雷达每个相邻的天线之间存在一个频率偏移,因此在发射阵列存在距离角度二维依赖性.而对于双基地频控阵多输入多输出(FDA-Multiple Input Multiple Output,FDA-MIMO)雷达而言,在导向矢量中耦合了波离方向、到达方向、距离(Direction Of Departure-Direction Of Arrival-range,DOD-DOA-range)三个信息,如何对三者信息进行解耦便成为研究的重点.本文针对双基地FDA-MIMO雷达的目标参数估计问题,提出了一个张量框架下的降维多重信号分类(Reduced-Dimension MUltiple SIgnal Classification,RD-MUSIC)的参数估计算法.首先,为了将发射阵列中的DOD和距离信息进行解耦,需要对发射阵列进行子阵的划分.紧接着利用高阶奇异值分解(High-Order-Singular Value Decomposition,HOSVD)算法获得信号子空间,并构建二维空间谱函数.其次,通过拉格朗日算法对空间谱进行降维,使其仅与DOA有关,从而得到DOA估计.然后利用子阵之间的频率增量来对DOD和距离信息进行解耦,同时消除相位模糊,最终得到与DOA估计自动匹配的DOD和距离估计.所提算法利用高维数据的多维结构提高了估计精度,同时能够有效地降低运算复杂度.数值实验证明了所提算法性能的优越性.
基金supported by the National Natural Science Foundation of China(Nos.61631020,61971218,61601167,61371169)。
文摘The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.