P(n,k)表正整数 n 分为 k 个分部的无序分拆的个数,每个分部≥1.它首先由数学家欧拉 (Euler) 提出.它已成为组合、图论及数论里的重要数据之一,应用广泛.目前,尚无 P(n,k)(k≥4)的简单统一便于计算的公式.本文得到 P(n,k)的一个能降低...P(n,k)表正整数 n 分为 k 个分部的无序分拆的个数,每个分部≥1.它首先由数学家欧拉 (Euler) 提出.它已成为组合、图论及数论里的重要数据之一,应用广泛.目前,尚无 P(n,k)(k≥4)的简单统一便于计算的公式.本文得到 P(n,k)的一个能降低分部数的递推恒等式,并证明它可表为有限个2部分拆之和.这个恒等式有理论上和递推计算上的用途.并举例介绍了它的初步应用.展开更多
文摘P(n,k)表正整数 n 分为 k 个分部的无序分拆的个数,每个分部≥1.它首先由数学家欧拉 (Euler) 提出.它已成为组合、图论及数论里的重要数据之一,应用广泛.目前,尚无 P(n,k)(k≥4)的简单统一便于计算的公式.本文得到 P(n,k)的一个能降低分部数的递推恒等式,并证明它可表为有限个2部分拆之和.这个恒等式有理论上和递推计算上的用途.并举例介绍了它的初步应用.